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1 Introduction
Neutral atom quantum processors are well suited to solving combinatorial graph problems.

In fact, the Ising Hamiltonian describing the dynamics of the qubits is closely related to the
cost function to be minimized. Solving the problems is then equivalent to finding the ground
state of the system, which can be achieved by adiabatic annealing, as it has been shown in
the case of the Maximum Independent Set (MIS) problem [1]. Although most QAOA applica-
tions focus on gate-based models of quantum computing, a promising avenue for noisy devices
is represented by analog variational algorithms. The analog mode of operation involves the
evolution of a quantum system under a continuously controllable resource Hamiltonian rather
than the discrete application of a fixed set of quantum gates.

Whereas the successful implementation of a gate-based algorithm is limited by the absence
of error correction on current devices, an analog algorithm is intrinsically more resilient to
noise [1]. In this framework, the role of Rydberg atom arrays is recognized as a prominent
example of how the ground state of a quantum Hamiltonian directly maps to the solution of a
hard combinatorial graph problem, MIS on unit-disk graphs for instance.

On neutral atom platforms, preparing specific quantum states is usually achieved by pulse
shaping, i.e., by optimizing the time-dependence of the Hamiltonian related to the system. This
process can be extremely costly, as it requires sampling the final state in the quantum processor
many times. Hence, determining a good pulse is one of the most important bottlenecks of the
analog approach. In this work, we propose a novel protocol for solving hard combinatorial
graph problems that combines variational analog quantum computing and machine learning.
Our numerical simulations show that the proposed protocol can reduce dramatically the number
of iterations to be run on the quantum device. Finally, we assess the quality of the our approach
by estimating the related Q-score, a recently proposed metric aimed at benchmarking QPUs.

2 Methodotogy
In this work, we focus on the Maximum Cut (MaxCut) and Maximum Independent Set

(MIS) problems. While the MaxCut problem is equivalent to minimizing the Hamiltonian of a
spin glass, the solutions of the MIS problem on unit-disk graphs can be encoded as the ground
state of the Hamiltonian describing neutral-atoms devices [1].

2.1 Pulse prediction
The way combinatorial graph problems are usually solved with quantum hardware involves

the optimal tuning of a set of parameters. This is usually done via an optimization loop
that is applied to each instance of the problem, which is time and resource-consuming. To
overcome both time and resource limitations, we propose a new supervised machine learning-
based approach that automates the parameter choices and creates pulse sequences for analog
quantum processes. Our model is based on the Chained Multi-Target Regression Algorithm
(CMTRA) [2], which is generally used to predict multiple target values that are dependent
upon the input and upon each other.



By predicting essential pulse parameters, one can considerably scale up quantum algorithms
and, hence, solve bigger instances of complex combinatorial problems without dedicated opti-
mization loops. The main objective of our supervised machine learning-based approach is to
automatically provide : i) the Rabi frequency and detuning values on different instants of the
pulse, and ii) the total duration of the pulse. Hence, the out-coming pulse is specifically tailored
to evolve the system to states that represent (near-)optimal solutions for a given combinatorial
graph problem instance.

2.2 Q-score metric
The Q-score metric [3] was developed to benchmark Quantum Processing Units at a time

when commercially viable NISQ applications are becoming a reality. It is application-centric,
hardware-agnostic, and can be applied equally effectively on current machines as well as future
large-scale devices. For these reasons, the Q-score represents to date one of the best attempts
at establishing a practical standardized benchmark that can be monitored over time to assess
the evolution of quantum computers in solving real problems. Essentially, the Q-score is the
largest number of qubits for which a solution to the problem is at least 20% better than the
average random solution.

3 Results and concluding remarks
In our results, the score obtained stayed above the 20%, even in the presence of noise, up to

the largest graphs we were able to simulate with noise in a reasonable amount of time. In order
to determine the Q-score of the method and platform we need to extrapolate the results to
larger problem sizes. To this end, we fit an exponential decay on the tail of the size dependence
of the score β(n) = β0e−n/n0 . The Q-score is then given by Qscore = n0 log(5β0). The results
are summarized in 1. For both problems, the Q-score is of the order of 80 (except for MIS of
non-UD graphs on noisy devices), to be compared with the Q-score determined in [3] for QAOA
on state-of-the-art gate-based QC platforms. In particular, the presence of noise does not seem
to lower significantly the score. Indeed, this specific behavior of analog quantum computing
is very different from what was observed in the digital quantum circuits [3], where the score
degrades faster for larger circuit depths. The comparison between the two approaches is not
easy, as there is no equivalent to the circuit depth here. However, this example highlights the
resilience to noises of the analog approach. For an in-deph overview of our work, one may refer
to [4].

Noiseless Noisy

MIS UD graphs 74 ± 5 86 ± 7
Non-UD graphs 80 ± 10 63 ± 4

MaxCut UD graphs 79 ± 11 75 ± 7
Non-UD graphs 80 ± 6 91 ± 16

TAB. 1 – Estimated Q-scores for MIS and MaxCut problems on Unit-Disk and non-UD graphs
and in a noisy and noiseless settings.
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