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1 The Time-Expanded 2 Flow Problem (TE2FP)

When trying to solve problems with arcs whose status depend on the time, a straightforward
way is to search for the optimal solution in a Time-Expanded Network (TEN) as did Krumke
and al.[1]. A connection between two nodes in this network represents the crossing of an arc
at a given time. Those kind of networks are used, among other applications, for evacuation
routing problems as did Park and al.[2].

Using a TEN has a lot of advantages because it does not contain cycles and Mixed Integer
Linear Programs are simpler. However, TENs depend on a time discretization. Unfortunately,
the number of arcs of a TEN grows very quickly depending on the time discretization used. Of
course, one can have an idea of the solution of their problem by using a coarse discretization,
but the rounding errors are multiplied with every edge used in the solution.

We are working here on a Dial A Ride Problem defined on a network G with a time horizon
Tmax. We are required to transport multiple commodities. For every commodity k, qk units of
commodity must travel from their origin ok to their destination dk. They can be pickup after
the date tk and must be delivered at most δk time units after. Also, the number of vehicles
is not fixed beforehand and the length of an arc is time dependant (i.e. Le is a function of
the time Le : t 7→ Le(t)). Lastly, we add an important hypothesis: preemption is allowed. It
means that one commodity may be handled by several vehicles.

A time-expanded network GT is constructed by copying every node of G for every possible
date of the time discretization used. Therefore, a node in this network corresponds to a node
of G at a certain date. Then, let X and Y = (Y k, k = 1 . . . , K) be two flows that satisfy
Kirchhoff laws on every node of the time-expanded network GT . Their meaning is that X is
integer and represents the number of vehicles on each edge and that Y k is real and represents
the quantity of commodity k travelling on each edge. Those two vectors are linked by the
fact that if commodities are transported through an arc, they must be transported by enough
vehicles.
Coupling constraints
On any edge e = ((v1, t1), (v2, t2)) with v1 ̸= v2 and t2 = t1 + L(v1,v2)(t1):

C.Xe ≥
∑

k

Y k
e (1)

But the number of variables is way too high and this model cannot give a precise solution
in a reasonable amount of time. Therefore, we want to project the TE2FP on the graph G,
solve this projected problem and lift its solution back into a TE2FP solution.



2 The projected problem
In the projected problem, we search for two flows X̄ (integer) and Ȳ = (Ȳ k, k = 1 . . . , K)
(real) defined on the network G that satisfy Kirchhoff laws and the Coupling Constraints. But
they now need to satisfy sub-tour constraints.
Extended no sub-tour constraints
The time dimension may be implicitly reintroduced in the projected model by noticing that
if the vehicles spend more than Tmax.Q time in a given area S, then at least Q vehicles must
enter into S. Therefore, no sub-tour constraints can be extended as:

Tmax.
∑

e∈δ−(S)
xe ≥

∑
e∈δ̄(S)

le.xe, S ⊂ N\{Depot} (2)

where N is the set of nodes of G, δ−(S) is the set of arcs starting from outside S and ending
inside S and δ̄(S) is the set of arcs which either start or end (or both) in S.
Commodities must follow acceptable paths
There is a risk that the solution (X̄, Ȳ = (Ȳ k, k = 1 . . . , K)) of the projected problem does
not correspond to a feasible solution (X, Y = (Y k, k = 1 . . . , K)) of the original problem. We
ensure that Ȳ can be lifted as a feasible vector Y by requiring from Ȳ to be decomposable into
a collection of acceptable paths:

Définition 1 A path γ from ok to dk is acceptable if and only if there is γok (resp. γdk) a path
from the depot to ok (resp. from dk to the depot) such that:

L(γok) + L(γ) + L(γdk) ≤ Tmax (3)

To verify if all those constraints are respected, the following problem is written, with Γ the set
of acceptable paths γ and yγ =

{ 1 if e ∈ γ
0 otherwise

, e ∈ E

}
:

Does it exist (λγ)γ∈Γ,

(P ) s.t.
∑

k

Ȳ k =
∑
γ∈Γ

λγ .yγ

λγ ≥ 0, ∀γ ∈ Γ

However, Γ is the set of all possible paths and not just the set of shortest paths. If Tmax

is large enough, Γ contains all possible paths. Therefore, this decomposition problem will be
solved by column generation or, in its dual version, by cuts generation (i.e. path generation).

3 The lift issue
It consists in turning the projected solution X̄, Ȳ = (Ȳ k, k = 1 . . . , K) into a solution X,
Y = (Y k, k = 1 . . . , K) of the original problem. We deal with it in a heuristic way by solving
a sequence of min cost flow problems defined on specific small-size sub-networks of the time-
expanded network GT .
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