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Introduction

Quantum computing is a new interesting field with promising performance to tackle opti-
misation problems. However, the potential for a quantum advantage of these algorithms over
highly-optimized classical solvers, such as CPLEX, must be explored empirically. But nowa-
days, despite of its actual fast development, quantum computing hardware has a limited me-
mory (Qubits) and a limited quality,i.e. the size of the circuit that can be faithfully executed
(Quantum Volume) [3]. Due to these limitations only small instances can be solved.

In the following we consider the Quantum Approximate Optimization Algorithm (QAOA),
proposed on [1], based on the Quadratic Unconstrained Binary Optimization (QUBO) model.
A typical approach to QAOA is mapping a combinatorial optimization problem into a binary
integer linear program (BILP) and map it into a QUBO. For problems, like maximum cut pro-
blem, where this process can be easily done, QAOA has shown a good performance. However,
QAOA doesn’t have such a good performance on problems with highly restrictive constraints,
indeed it usually returns unfeasible solutions. The main contribution of this paper is to show
how to solve successively small QUBO problem to converge on a good feasible solution. We
show some results on the unsplittable multi-commodity flow problem (UMCFP).

Unsplittable multi-commodity flow problem (UMCFP)
Let consider a graph G = (V, A) where V is a set of vertices and A the set of arcs where for each
arc a ∈ A a weight wa and a capacity ca are considered. We also consider a set of commodities
K where for each commodity k ∈ K, sk represents the source, tk the destination, bk the size of
the commodity and rk the reward of the commodity. The unsplittable multi-commodity flow
problem consists in maximizing the reward of accepted commodity minus the cost to route the
commodity on the network such that for each accepted commodity a path is considered from
the source to the destination and all arc capacities are respected.

Path based model
Using integer linear program we can model the UCMFP using path variables. This model has
an exponential number of variables but thanks to the column generation algorithm we are able
to solve the linear relaxation.



Path based model :
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where Pk is the set of all paths for the commodity k, xk
p is a binary variable equals to 1 if the

path p is selected for the commodity k, 0 otherwise and yk is a binary variable equals to 1 if
the commodity k is accepted, 0 otherwise.

Quadratic Unconstrained Binary Optimization model
The classical transformation [2] of an integer linear program (ILP) in a QUBO model is given
by

min cT x + M(Ax − b)T (Ax − b)
s.t. x ∈ {0, 1}n,

where additional slack variables are added to the original ILP to consider only equalities. Due
to the number of variables, slack variables and constraints this transformation is not scalable.

Improvements
We propose some improvements to solve bigger instances.

— Dedicated transformation : the first improvement consists in removing inequalities∑
p∈Pk

xk
p = yk for each commodity and considering the following objective function
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reducing the number of iterations for the QAOA to converge on a feasible solution.
— Cutting plane method : the second improvement focus on the size of the QUBO

model. Reducing the size of the QUBO model allow using less QuBit and thus we can
solve bigger instances. The goal is to add dynamically capacity constraints as cut-and-
branch algorithm.

— Lagrangian relaxation : we propose an alternative QUBO reformulation based on the
Lagrangian relaxation.

— Pricing without linear relaxation : thanks to the Lagrangian relaxation we can
drive the column generation without considering the linear relaxation and the value of
dual variables. This pricing procedure is a heuristic approaches since the QAOA produce
a feasible (integer) solution.

We present some results to show the efficiency of our method to tackle the UMCFP using
QAOA.
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