Two hard problems in box-Totally Dual Integral polyhedra

Patrick Chervet ${ }^{1}$, Roland Grappe ${ }^{2}$, Mathieu Lacroix ${ }^{2}$, Francesco Pisanu ${ }^{2}$, Roberto Wolfler-Calvo ${ }^{2}$
${ }^{1}$ Lycée Olympe de Gouges, rue de Montreuil à Claye, 93130, Noisy le Sec, France.
${ }^{2}$ Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430, Villetaneuse, France.
\{grappe,lacroix, pisanu, wolfler\}@lipn.fr

Mots-clés : Box-TDI polyhedron, Totally equimodular matrix, Incidence matrix

1 Introduction

A rational linear system is totally dual integral (TDI) if for every integer linear function for which the optimum is finite the associated dual problem has an integer optimal solution. A TDI system is box-TDI if adding any rational bounds on the variables preserves its TDIness. Box-TDI systems are systems that yield strong min-max relations such as the one involved in the Max Flow-Min Cut Theorem of Ford and Fulkerson.

Box-total dual integral systems and polyhedra received a lot of attention from the combinatorial optimization community around the 80 's. A renewed interest appeared in the last decade and since then many deep results appeared involving such systems.
Box-TDI systems characterize totally unimodular matrices. A matrix is totally unimodular (TU) if every subset of linearly independent rows forms a unimodular matrix, a matrix being unimodular if it has full row rank and all its nonzero maximal minors have value ± 1. A matrix A is TU if and only if the system $A x \leq b$ is box-TDI for each rational vector b [7, Page 318].
Until recently, the vast majority of known box-TDI systems were systems associated with TU matrices. For instance, König's Theorem [6] can be seen as a consequence of the fact that the vertex-edge incidence matrix of a graph is TU if and only if the graph is bipartite [5].
Box-TDI systems do not describe all rational polyhedra, while TDI systems do [4]. A polyhedron that can be described by a box-TDI system is a box-TDI polyhedron, and every TDI system describing it is actually box-TDI [2]. Box-TDI polyhedra characterize the following generalization of TU matrices. A matrix is totally equimodular (TE) if every subset of linearly independent rows forms an equimodular matrix, a matrix being equimodular if it has full row rank and all its nonzero maximal minors have the same absolute value. A matrix A is TE if and only if the polyhedron $\{x: A x \leq b\}$ is box-TDI for each rational vector b [1].

2 Contributions

In this work, we prove that the problem of deciding whether a given polyhedron is box-TDI is co-NP-complete. Our proof builds upon the hardness result of Ding et al. [3] about the recognition of box-TDI systems.
We also prove that the edge-vertex incidence matrix of any graph is TE. This implies that the edge relaxation of the stable set problem is a box-TDI polyhedron. From the NP-hardness of the maximum stable set problem, it follows that optimizing a linear function over $\left\{x \in \mathbb{Z}^{n}: A x \leq \mathbf{1}\right\}$ is NP-hard when A is TE. Since the latter problem is polynomial when A is TU , this unveils a major difference between TE and TU matrices. Moreover, this hardness result also implies that integer optimization over box-TDI polyhedra is NP-hard.

Références

[1] Patrick Chervet, Roland Grappe, and Louis-Hadrien Robert. Box-total dual integrality, box-integrality, and equimodular matrices. Mathematical Programming, 188(1) :319-349, 2021.
[2] William J. Cook. On box totally dual integral polyhedra. Mathematical Programmming, 34(1) :48-61, 1986.
[3] Guoli Ding, Li Feng, and Wenan Zang. The complexity of recognizing linear systems with certain integrality properties. Mathematical Programming, 114(2) :321-334, 2008.
[4] F.R. Giles and W.R. Pulleyblank. Total dual integrality and integer polyhedra. Linear Algebra and its Applications, 25 :191-196, 1979.
[5] Alan J. Hoffman and Joseph B. Kruskal. Integral Boundary Points of Convex Polyhedra, pages 49-76. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
[6] Dénes König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38 :116-119, 1931.
[7] Alexander Schrijver. Theory of linear and integer programming. In Wiley-Interscience series in discrete mathematics and optimization, 1999.

