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1 Introduction

Feature selection is an important task undertaken during the development of predictive
models. Excluding irrelevant features can have positive effects on prediction accuracy and model
interpretability, especially when there is a large number of candidate features [2]. Numerous
approaches exist for feature selection in the literature — shrinkage, subset selection and criterion
based methods are examples of techniques for feature selection from a statistical point of view.
Recently, optimization approaches for feature selection have received an increasing attention
due to their potential improve subset selection approaches in the context of specific learning
models. Some of the related optimization literature addresses feature selection by focusing
on the training problem. In [4], a Mixed Integer Linear Programming (MILP) formulation is
developed for an embedded feature selection problem in Support Vector Machines (SVM). A
min-max approach to select features for nonlinear SVM classification has also been proposed in
[3]. Other approaches have proposed to address feature selection at the validation level : in this
case, the problem is to determine the optimal set of features based on hold-out data validation.
In [1], the authors frame feature selection for SVMs as a bilevel optimization problem where
the leader represents the validation step and the follower represents the training problem.
They develop a genetic algorithm to solve this bilevel optimization problem. We build on this
research stream and develop exact, bilevel optimization approaches for feature selection.

2 Problem formulation

We propose a bilevel optimization formulation for feature selection in binary classification
tasks, where the classifier is an SVM with a linear kernel. Our formulation allows us to integrate
both the training and testing phases of classification. In our bilevel model, the leader decides
the features to be selected in order to maximize the classification accuracy, and the follower (i.e.
the SVM) determines the optimal parameters of the separating hyperplane given the features
selected by the leader.

Let © be the data consisting of |Q2] = m data points, where each data point consists of n
features. Let Qp C Q be the training data and let Q = Q\ Q7 be the validation data. For each
data point i € Q, we denote x; € R™ its feature vector and y; € {—1, 1} its class. Let u; € {0, 1}
be the decision variable representing whether feature j = 1,...,n is selected (1) or not (0).
Given the training set {27, and the vector u determined by the leader, the parameterized
follower problem SVM(u) is to determine the optimal parameters (w,b) € R" x R of the
separating hyperplane w” - & 4 b. Let & be the error associated with misclassifying data point
1 € Qp, and C is a regularization parameter used to penalize misclassified points.



Mathematically :

SVM(u) = arg min
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Let z € {0,1}™ be a decision variable such that z; = 1 if validation data point i € Qy is
correctly classified and z; = 0 otherwise. As the leader aims to maximize the accuracy, i.e. the
number of correctly classified data points, the feature selection problem can thus be formulated
as the bilevel optimization problem below :
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3 Solution approach and evaluation
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Since the parameterized follower problem SVM(u) is convex, it can be reformulated using
its first order optimality conditions. While this results in a single-level problem, the presence
of Karush-Kuhn-Tucker (KKT) complementarity conditions results in a problem that is both
non-convex and nonlinear. We develop customized branch-and-bound (B&B) algorithms to
solve the resulting single-level, mathematical programming with complementarity constraints
(MPCC) formulation. Our approach is validated using a variety of benchmark data sets and
evaluation metrics, and is also compared to some classification methods.
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