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1 Introduction
We consider the well-known transportation problem (TP), one of the paradigmatic network
optimization problems present in every operations research textbook. TP can be expressed as
follows. There is a given commodity that requires to be shipped from a number of sources to
a number of destinations at minimum cost. Let M and N be the set of sources and the set of
destinations respectively. Let ai and bj denote the level of supply at each source i ∈ M and
the amount of demand at each destination j ∈ N , respectively, where, typically,

∑
i∈M ai =∑

j∈N bj . Let cij denote the unit transportation cost from source i ∈ M to destination j ∈ N .
Let, also, xij ≥ 0 be a real variable representing the quantity sent from source i ∈ M to
destination j ∈ N . A linear programming (LP) formulation of TP reads

min
∑

i∈M

∑
j∈N cijxij∑

j∈N xij = ai ∀ i ∈M∑
i∈M xij = bj ∀ j ∈ N

xij ≥ 0 ∀ i ∈M, j ∈ N.

Since the work in [4], TP has been intensively studied in the literature. As it can be formulated
as a continuous linear program, it can also be solved by the most efficient algorithms available
for LP, namely, the primal simplex method, the dual simplex method and the barrier method.
Also, the current state of the art algorithm for the minimum cost flow problem (as mentioned
in [2]), which generalizes TP, is the so-called network simplex algorithm (knowledge of which is
assumed), see e.g. [3], currently available in state-of-the-art mathematical programming solvers.
Besides, in [1] a comparison of a series of available softwares for TP (including solvers Cplex
and Gurobi) is provided where it appears that approaches based on the simplex algorithm (in
its various expressions : primal, dual, network) are the best performing. We propose here a
new exact pivot-based approach for TP denoted ITERATED INSIDE-OUT (I-I-O).

2 The ITERATED INSIDE-OUT algorithm
The I-I-O algorithm requires an initial basic feasible solution and is split into two phases that
are iteratively repeated until an optimal basic feasible solution is reached. In phase 1 (the
INSIDE phase), the current basic feasible solution is progressively improved by increasing one
after another several non-basic variables with negative reduced cost. This step is performed
by progressively updating the value of the starting set of basic variables. We remark that, in
phase 1, each variation of a non-basic variable is performed by means of a pivoting step with
respect to the original basic solution, corresponding to the search of a path in a tree for TP.
At the end of this phase, a non-basic feasible solution is derived which is inside the feasibility
region determined by the constraints set. In phase 2, the added variables are considered one
at a time and the algorithm progressively moves back (the OUT oriented phase where the



solution value is progressively improved or kept equal in case of degeneracy) iteratively reducing
the distance from a basic solution. Phase 2 proceeds as indicated until a new basic feasible
solution is reached. Also, in this phase, every time a new added variable is considered, a pure
pivoting step is necessary (again corresponding to the search of a path in a tree) in order
to progressively reduce the number of variables with value superior to 0. Once a new basic
solution is obtained, the algorithm recomputes the reduced costs of the non-basic variables
and iterates reapplying phase 1. The peculiarity of the proposed approach is that both in
phases 1 and 2, differently from a standard simplex iteration that requires the computation
of lagrangian multipliers and reduced costs, each pivoting step requires just the computation
of a path in a tree, while lagrangian multipliers and reduced costs are computed only once
in a while whenever phase 1 restarts. This aspect strongly enhances the performance of the
proposed approach. Computational testing is summarized in Table 1 where I-I-O is compared
to Cplex and Gurobi (versions 20.1.0.0 and 9.5.1, respectively). All the experiments were run
as single thread processes on a laptop personal computer equipped with a 11th Gen Intel Core
i7-1165G7 2.80GHz × 8 processor and 16GB of RAM, and running Ubuntu 20.04.5 LTS.
All supply/demand quantities were drawn from the discrete uniform distribution U{1, 1000}.
We present here the results on square instances with K sources and K destinations, with
K = 1000, 2000, 4000, 8000, 16000 and a cost distribution drawn from the discrete uniform
distribution U{1, K}. Ten instances were considered for each value of K. We note that I-I-O
strongly outperforms all methods listed in the table (that are limited to problems with size
up to 4000x4000 - we remark an unusual behavior of Gurobi Primal Simplex on instances
2000x2000) and solves to optimality instances with up to 16000x16000 requiring on the largest
instances strictly less than 30 seconds on average. Due to space limitation, we do not describe
here the procedure to generate the initial basic solution, but even starting from the well known
North-Western Corner rule, 16000x16000 instances are solved within 60 seconds.

Size 1000x1000 2000x2000 4000x4000 8000x8000 16000x16000
Algorithm CPU (ms) CPU (ms) CPU (ms) CPU (ms) CPU (ms)

Cplex Network Simplex 1466 6923 35858 - -
Cplex Primal Simplex 1670 7546 34692 - -
Cplex Dual Simplex 2433 16351 122782 - -

Cplex Barrier 7451 42969 326885 - -
Gurobi Primal Simplex 2365 216001 55684 - -
Gurobi Dual Simplex 991 3755 15834 - -

Gurobi Barrier 4508 24875 142573 - -
I-I-O 61 229 1070 4317 26320

All the CPU times reported in the table are averaged over 10 instances.

TAB. 1 – Comparing I-I-O algorithm to Cplex and Gurobi.
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