
Learning with Combinatorial Optimization Layers:
a Probabilistic Approach

Guillaume Dalle1, Léo Baty1, Louis Bouvier1, Axel Parmentier1

CERMICS, Ecole des Ponts, Marne-la-Vallée, France
{guillaume.dalle, leo.baty, louis.bouvier, axel.parmentier}@enpc.fr

Keywords : combinatorial optimization, machine learning, automatic differentiation, Julia
programming language.

Machine learning (ML) and combinatorial optimization (CO) are two essential ingredients
of modern industrial processes. While ML extracts meaningful information from noisy data,
CO enables decision-making in high-dimensional constrained environments. But in many sit-
uations, combining both of these tools is necessary: for instance, we might want to generate
predictions from data, and then use those predictions to make optimized decisions. To do that,
we need pipelines that contain two types of layers: ML layers and CO layers.

Let us discuss a generic hybrid ML-CO pipeline, which includes a CO oracle amid several
ML layers:

Input x−−−−→
�� ��ML layers Objective θ−−−−−−→ CO oracle Solution y−−−−−−→

�� ��More ML layers Output−−−−→ (1)

The inference problem consists in predicting an output from a given input. It is solved online,
and requires the knowledge of the parameters (weights) for each ML layer. On the other hand,
the learning problem aims at finding parameters that lead to “good” outputs during inference.
It is solved offline based on a training set that contains several inputs, possibly complemented
by target outputs.

In Equation (1), we use the term CO oracle to emphasize that any algorithm may be used
to solve the optimization problem, whether it relies on an existing solver or a handcrafted
implementation. In our hybrid ML-CO pipelines, we consider CO oracles f that solve the
following kind of problem:

f : θ 7−→ argmax
v∈V

θ⊤v (2)

Here, the input θ ∈ Rd is the objective direction. Meanwhile, V ⊂ Rd (for vertices) denotes
a finite set of feasible solutions – which may be exponentially large in d – among which the
optimal solution f(θ) shall be selected.

Due to their many possible applications, hybrid ML-CO pipelines currently attract a lot of
research interest. The recent reviews by [1] and [3] are excellent resources on this topic. Un-
fortunately, relevant software implementations are scattered across paper-specific repositories,
with few tests, minimal documentation and sporadic code maintenance. Not only does this
make comparison and evaluation difficult for academic purposes, it also hurts practitioners
wishing to experiment with such techniques on real use cases. Furthermore, they are seldom
compatible with modern ML libraries, which provide a wealth of basic building blocks called
layers that allow users to assemble and train complex pipelines. Our goal is to provide a Julia
package that address these issues.

We face two main mathematical challenges. First, if we want to use a CO oracle as a layer,
we must be able to compute meaningful derivatives using automatic differentiation. Since it
may call black box subroutines, an arbitrary CO oracle is seldom compatible with automatic
differentiation. And even when it is, its derivatives are zero almost everywhere, which gives
us no exploitable slope information. Second, standard ML losses are ill-suited to our setting,



because they often ignore the underlying optimization problem. Our goal is to remove these
difficulties.

Our general approach is to turn the CO oracle f into a probability distribution p(·|θ) on V .
The naive choice would be the Dirac mass p(v|θ) = δf(θ)(v), but it shares the lack of dif-
ferentiability of the oracle itself. Thus, our goal is to spread out the distribution p into an
approximation p̂, such that the probability mapping θ 7−→ p̂(·|θ) becomes smooth with respect
to θ. If we can do that, then the expectation mapping

f̂ : θ 7−→ Ep̂(·|θ)[V ] =
∑
v∈V

vp̂(v|θ), (3)

where it is understood that V ∼ p̂(·|θ), will be just as smooth. Furthermore, using expectations
of the regret or the non-optimality of the imitated solution leads to natural losses that take
into account the structure of the CO layer.

Based on these ideas, we introduce InferOpt.jl1, a Julia package which 1) can turn any
CO oracle into a layer with meaningful derivatives, and 2) provides structured loss functions
that work well with the resulting layers. It contains several state-of-the-art methods that are
fully compatible with Julia’s automatic differentiation and ML ecosystem, making CO layers
as easy to use as any ML layer. To describe the available methods in a coherent manner, we
leverage the unifying concept of probabilistic CO layer, hence the name of our package.

The talk will introduce these probabilistic CO layers, and show how they can be used to
build practically efficient algorithms for several combinatorial optimization problems from the
literature. We will also illstrate how easy it is to build such pipelines with InferOpt.jl.
Further details can be found in the following preprint [2].

References
[1] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial

optimization: A methodological tour d’horizon. 290(2):405–421.

[2] Guillaume Dalle, Léo Baty, Louis Bouvier, and Axel Parmentier. Learning with Combina-
torial Optimization Layers: A Probabilistic Approach, July 2022.

[3] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-
to-End Constrained Optimization Learning: A Survey. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, pages 4475–4482. International
Joint Conferences on Artificial Intelligence Organization.

1https://github.com/axelparmentier/InferOpt.jl


