
Random Search versus Uniform Sampling
A counter-intuitive result

Mathieu Vavrille
Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

mathieu.vavrille@univ-nantes.fr

Keywords : Constraint Programming, Solution Coverage, Software Testing, Software Prod-
uct Line, Feature Model

1 Introduction
With the increase in software size and complexity comes the need of good automatically gen-
erated test suites. For example, the Linux kernel has thousands of features (e.g. options,
libraries, ...). A commonly used quality measure of a test suite is the t-wise coverage. It aims
at analysing how many interactions of t features are tested.

Multiple tools already exist for this task (such as [2]) and can guarantee that all the possibles
combinations of t features are present in the test suite. However, these tools often require
computing beforehand the set of all t-wise combinations. This set can be as big as

(|F|
t

)
2t

(where F is the set of features). On software of thousands of features it is intractable to try
to enumerate all the t-wise combinations when t is growing.

With this consideration in mind, more recent approaches (such as [1]) use the improvements
done in SAT samplers to generate a test suite. There is no need to generate the set of all t-wise
combinations, at the cost of the coverage guarantee. Yet the experiments have shown that the
coverage is good, and these approaches can generate solutions on demand.

We show here that a random search, i.e. a search strategy that chooses randomly a feature,
and add it to a configuration or not, outperforms a uniform sampler for the task of t-wise
coverage on feature models. This result is counter-intuitive because a random search is a
biased sampler, compared to a uniform sampler whose behaviour is proved.

2 Problem Description
A Feature Model is a compact representation of all the possible configurations of a Software
Product Line, on a set F of features. An example of feature model of a game engine is given in
Figure 1: a game has a style, and optionally a Multiplayer mode; the style is either Shooter
or Racing, and the Multiplayer mode can be Local or Online, or both. Through a tree
structure and propositional formulas, feature models define the set of allowed configurations
S, where a configuration is a subset of F .

A t-wise combination is a mapping σ : F ′ → {0, 1} with F ′ ⊆ F and |F ′| = t. A configura-
tion C ∈ S is said to cover a combination σ if for all f ∈ F , σ(f) = 0 ⇔ f ∈ C. For example
on the Game feature model, a developer would like to test if the 2-wise (pairwise) combination
{Racing 7→ 1, Multiplayer 7→ 0} (i.e. a single player racing game) can be generated by the
game engine.

Given two integers t and k, we are interested in the problem of finding k configurations that
cover the most t-wise combinations possible. In the following section we apply two approaches
(random search and uniform sampling) to generate test suites and compare the number of t-
wise combinations covered. These two approaches have the advantage of not having to generate
the set of all the combinations (there are possibly

(n
t

)
2t t-wise combinations on n features).

Game

Multiplayer

OnlineLocal

Style

RacingShooter
Cross-tree constraints:
Shooter =⇒ Online

FIG. 1: Example of Feature Model

0 20 40 60 80 100
#Solution

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

#p
ai

rw
ise

 c
om

bi
na

tio
ns

 c
ov

er
ed

1e6

Uniform
Baital-5
Baital-10
RandomSearch

FIG. 2: Evolution of the pairwise coverage on the
instance brutus

3 Experiments
We apply the random search strategy in a constraint solver to generate solutions of feature
models. During the decision phase of a constraint solver, a variable X and a value v have
to be chosen to continue the solving. The strategy RandomSearch chooses this variable
and value at random (and uniformly among all possibilities). Using this strategy to generate
solution makes some solutions more likely to be selected than others. We used choco-solver
to implement RandomSearch.

We compare it to uniform sampling, and to the state-of-the-art tool Baital [1]. Baital
is a tool generating a test suite based on a weighted sampler. It first samples uniformly m
configurations. Then, knowing these m configurations, weights are chosen to make it more
likely to sample unseen combinations. By applying many rounds of this procedure a test suite
is generated. In the experiments, we tested Baital with 5 and 10 rounds, and searched for
100 configurations.

We used a benchmark of feature-models from different origins in UVL format.1 An example
of evolution of the number of 2-wise combinations found is given in Figure 2. It shows that
RandomSearch outperforms the uniform sampler, and even Baital. On average (using the
geometric average), RandomSearch achieves the same coverage as Baital-10 with three
times fewer solutions. Due to its simplicity, on average, RandomSeach is 100 times faster
than Baital-10. These experiments show that a simpler random process can lead to very
good coverage.

References
[1] Eduard Baranov, Axel Legay, and Kuldeep S. Meel. Baital: an adaptive weighted sampling

approach for improved t-wise coverage. In ESEC/FSE ’20: 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 1114–1126. ACM, 2020.

[2] Akihisa Yamada, Armin Biere, Cyrille Artho, Takashi Kitamura, and Eun-Hye Choi.
Greedy combinatorial test case generation using unsatisfiable cores. In David Lo, Sven
Apel, and Sarfraz Khurshid, editors, Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pages 614–624. ACM, 2016.

1https://github.com/Universal-Variability-Language/uvl-models

https://github.com/Universal-Variability-Language/uvl-models

	Introduction
	Problem Description
	Experiments

