What is the optimal cutoft grade for multiple minerals ?
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1 Introduction

The standard practice in mine planning is to first define the contour of a mine by solving
the ultimate pit problem, and then to perform a cutoff grade optimization to define at each
moment in time which material should be mined and processed ; the rest is considered waste.
The seminal work of K. Lane [1] established a unified framework to perform cutoff grade
optimization, taking into account economic factors, production capacities, and the time value
of money. The algorithm proposed in [1] is widely used in commercial software for the mining
industry, and its optimality has been characterized by [2].

We study deposits with multiple minerals with special attention to the two-dimensional case.
Mines that contain more than one economic mineral include copper-gold, lead-zinc, copper-
lead-zinc, among others. Our main contribution is to show that, in two dimensions, the solution
that maximizes the operations’ net present value is formed by grade-pairs that can be defined
as the region above a line. We also show that in n dimensions the optimal cutoff surface is a
hyperplane.

2 The mining scheduling problem

We consider the mining operation as a succession of three stages : mining, concentrating, and
refining. We say that a function A : [0, g1] x [0, go] — [0, 1] is a grade density function describing
an homogeneous orebody if it is Lebesgue-integrable with fgl 0§2 Ag1,92)dg1dge = 1, where
g; is the highest grade of mineral ¢ present in the mine. We define set of admissible grade-
pairs, denoted by Q C [0,g1] x [0, go], as the set of grade-pairs (g1,¢92) € € that is sent to
the concentrator ; the rest is waste. Figure 1 shows some of the level sets of the grade density
function A together with the set (2 in gray.

FIG. 1 — A cutoff line, with admissible grade-pairs in gray.



We define @), as the amount of material to be extracted from the deposit at time ¢, Q.+
is the amount of extracted material to be sent to the concentrator, and Q,lni and Q%t are the
amount of minerals 1 and 2 to be refined, respectively. They can be characterized as
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where z; is the recovery rate. We can write the mining schedule problem in two dimensions as
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where (M,C, R;) and (m,c,r;) are upper limits and unit costs, respectively, in the mining
operation, s; is the sale price, f is a fixed cost, d is the discount rate, 6 = 1/(1 +d), T is the
time horizon, w; is the percentage of the time period over which the mine is operational, and
Uy is the material left to be extracted.

2.1 Bilevel reformulation of problem (1)
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2.2 Theorem

The optimal curve Q) is a line in 2-D, and a hyperplane in n-dimensions.
Idea of the proof : We use Green’s Theorem to convert integrals of areas into line integrals,
and then Euler-Lagrange equations to derive the necessary conditions the curve has to satisfy.
Considering all possible active constraint cases, we concluded the optimal curve is a line. In [3]
we extended the results for the n-dimensional case using the generalized Stokes Theorem and
showed that the optimal solution is a hyperplane.
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