Exact and Anytime Approach for Solving the Time Dependent

Traveling Salesman Problem with Time Windows

Romain Fontaine, Jilles Dibangoye, Christine Solnon

Univ Lyon, INSA Lyon, Inria, CITI, EA3720, 69621 Villeurbanne, France
{romain.fontaine, jilles-steeve.dibangoye,christine.solnon}@insa-lyon.fr

Keywords : Travelling Salesman, Dynamic Programming, Time-Dependent cost functions

1 Introduction

The Time Dependent (TD) Traveling Salesman Problem (TSP) is a generalization of the TSP
where travel times vary throughout the day, thus allowing one to take traffic conditions into
account when planning delivery tours in an urban context. The TD-TSPTW further generalizes
this problem by adding Time Window (TW) constraints. The relevance of considering TD
travel times in an urban context is studied in [I3] on realistic data; it is shown that this
reduces TW violations and also, in some cases, tour durations.

Definition of the TD-TSPTW. The set of vertices to visit is denoted V = {0,...,n}: 0
is the starting vertex, and n the ending vertex (in practice, 0 and n often refer to the same
location). C = V \ {0,n} denotes the set of customer vertices. to denotes the starting time
from vertex 0. Given i € V, e; and [; respectively denote the earliest and latest visit times of
1. We assume that eg=1[y=e, =ty. The latest visit time of n, l,,, represents the time horizon.

TWs are hard constraints, but it is possible to arrive earlier than e; on node 7. In this case,
we have to wait on i. Given a time ¢t and a TW [e;, [;], we note t4(e; ;] the TW-aware time that
includes the waiting time before the opening if we arrive too early (i.e., ty, ;) = €; if t < ;).
If the constraint is violated (i.e., t > [;), we set ty(, ;) = oo. Otherwise, we have ty, ;) = t.

Given i,j € V, ¢; j denotes the TD cost function such that ¢; ;(¢) is the travel time from i to j
when leaving ¢ at time ¢, and a; ; denotes the arrival time function such that a; ;(t) = t+c¢; ;(t).
We assume that TD cost functions satisfy the First-In First-Out (FIFO) property [9]. This
property ensures that each arrival time function a; ; is non-decreasing, i.e., Vi1, t2 € [to, ln], t1 <
ta = a;;(t1) < a;(t2). In other words, waiting at ¢ cannot allow one to arrive sooner at j.

The goal of the TD-TSPTW is to minimise the makespan, i.e., the arrival time on n of a
path that starts from 0 at time tg, visits each customer i € C once within its TW [e;, ;] and
ends on n no later than [,,.

Related work. The TD-TSP has been introduced in [I1]. Since then, different approaches
have been proposed to solve this problem (or its variants) and a review may be found in
[7. It includes approaches based on metaheuristics which provide no guarantee on solution
quality. In this paper, we focus on exact approaches. Many of these approaches are based on
Integer Linear Programming (ILP), and two state-of-the-art approaches are [I] and [15]. In [15],
Dynamic Discretization Discovery is used to dynamically refine time steps and state-of-the-art
results are obtained on instances with very tight TWs. In [I], a relaxation to the TSPTW is
used to compute bounds: this relaxation is tight when congestion patterns are similar among
all arcs of the graph, and this approach obtains state-of-the-art results in this case.

An other exact approach is Dynamic Programming (DP), which has been initially proposed
in [2] for the TSP, and extended to handle TD cost functions in [I2] and TWs in [4]. These
approaches basically explore a state space composed of O(n-2") states in a level-wise manner.
To avoid combinatorial explosion, we may consider a State Space Relaxation (SSR) by merging

some states into a single one to compute lower bounds, as proposed in [4]. Another possibility
is to limit the number of states stored at each level to compute upper bounds, as suggested in
Restricted DP (RDP) [12].

In [3], a framework based on Multivalued Decision Diagrams is introduced for solving prob-
lems that have DP formulations. It is based on RDP and SSR and it is both exact and anytime,
i.e., it produces a sequence of solutions of increasing quality until proving optimality (given
enough time and memory). This approach is improved by [§], which computes new bounds and
presents results for several problems, including the TSPTW. More generally, various anytime
extensions of A* have been proposed to speed-up the exploration of state spaces. For example,
Iterative Memory Bounded A* (IMBA*) is an anytime variant of A* which has won the 2018
ROADEF challenge [10]. The basic idea of IMBA* is to limit the number of stored states to
a parameter D which is progressively increased (when D = 1, the algorithm behaves like a
greedy one; when D = oo, the algorithm is exact).

In this paper, we propose to use Anytime Column Search (ACS) which has been introduced
in [T4]. ACS is both exact and anytime and, like IMBA*, it iterates A*-like searches. However,
instead of bounding the number of stored states, ACS only expands the best state of each level.

Organization of the paper. Our solving approach is presented in Section[2] Experimental
results are presented in Section [3] Conclusions and future works are discussed in Section
Due to space limits, many details on both the solving approach and experimental results have
been omitted; more details may be found in the research report [6].

2 New Approach for the TD-TSPTW

DP. Let us first describe the basic principles of DP for solving the TD-TSPTW as it is a
starting point for introducing our approach. Given a vertex i € V \ {0} and a set of vertices
S CC\ {i}, let p(i,S) denote the earliest arrival time of a path that starts from 0 at time ¢,
visits each vertex of S exactly once, and ends on 4, while satisfying TW constraints of all vertices
in SU {i} (if no such path exists, then p(i,S) = o0). We may recursively define p(i,S) as
follows: if S = (), then p(i, S) = ag,i(to)1fe, 1,]; otherwise p(i, S) = minjes a;i(p(j, S\{7}))1es.1:]-
The optimal solution is p(n,C), i.e., the earliest arrival time on n of a path that starts from 0
at to and visits all vertices of C during their TWs.

State-transition graph. The optimal solution may be computed by searching for a path
in a state-transition graph. States are triples (i, S,t) such that ¢ € V \ {0} is the last visited
vertex, S C C\ {i} is the set of customers that have been visited before i, and ¢ € [e;, l;] is
the arrival time on 7. A state (i,S,t) is an initial state whenever S = (): in this case, i is the
first customer visited after the initial depot 0, and ¢t = ag,i(t0)1[e,,)- A state (i,S,t) is a final
state whenever ¢ = n and § = C: in this case, all customers have been visited and ¢ is the
arrival time on the final depot n. Edges of the state-transition graph correspond to transitions
between states: there is an edge from (i, S,t) to (5,8 U {i}, a;(t)q[e;,;)) for each customer
Jj € C\ (SU{i}) such that a; j(t) < ;. The goal is to find a path from an initial state to a
final state (n,C,t) such that ¢ is minimal.

Exploration of the state-transition graph with ACS. Our instantiation of ACS searches
for paths in the state-transition graph, from initial to final states. As usual in A*-based
algorithms, it uses a lower bounding function f to evaluate a state (i,S,t): f(i,S,t) is a lower
bound of the arrival time of the fastest path that starts from ¢ at time ¢, visits every vertex of
C\ (SU{i}) within its TW, and ends on n (bounding functions are described below).

States are created during search: starting from initial states, we iteratively choose an open
state and expand it by creating all its successors in the state-transition graph (we say that a
state is open whenever it has been created but not expanded). For each level k£ € [0,n — 2],
we maintain a set open(k) of open states (i,S,t) such that #S = k. Also, we maintain a set
ND of all created states that are not dominated by another created state, where state (i, S,t)

dominates state (i,S,t") whenever ¢t < t. Initially, ND and open(0) contain all initial states
whereas open(k) is empty for every other level k£ > 0. While there exist open nodes, we consider
each level k£ ranging from 0 to n — 2 and we expand the most promising open state s of that
level (i.e., the one that minimizes f(s)).

ACS ends when all open sets are empty. In this case, the last solution found is optimal (see
proof in [14]). However, as improving solutions are found progressively, one may stop ACS
when a given limit is reached. If there are no TWs, a first solution is found at the end of the
first iteration (i.e., the one obtained by a greedy algorithm guided by f(s)). Of course, in
presence of TWs it may be necessary to iterate more than once before finding a solution.

Propagation of TWs. TW constraints are propagated at the beginning of the search in
order to infer precedence relations and tighten other TWs, using the same rules as in [I5].
These rules operate on two sets £ and R, where £ represents the set of edges that may be used
in a feasible solution, and R is the set of precedence relations between nodes. Both sets are
used to prune the search space by discarding transitions leading to infeasible solutions.

To prevent exploring states leading to solutions worse than the best known, we constrain
the latest ending time of a tour [,, to be equal to the ending time of the best known solution
and propagate TW constraints again. As far as we know, it is the first time this procedure is
used to prune the search space during the search.

Computation of the lower bound f. Given a state s = (i,S,t), f(s) is a lower bound
of the arrival time of the fastest path that starts from ¢ at time ¢, visits every customer in
C\ (SU{i}), and ends on n, while satisfying all TWs (f may detect that no such path exists
and return oco). It is used during search to (i) expand first the most promising state of each
level, and (ii) prune the state space when a state cannot lead to a better solution.

A first step to compute f(s) is to compute a graph G5 = (Vs, &) in which we solve a
relaxation of the shortest Hamiltonian path problem from ¢ to n. The vertices of this graph
are Vs = {n}UC\ S. A straightforward definition of the set of edges is & = EN (Vs \ {n}) x
(Vs\{i})), as £ contains edges than may be used in a feasible solution and the path must start
from i and end on n. To tighten the lower bound, we further refine & by (i) removing arcs
leaving the current node 7 that violate precedence constraints in set R, and (ii) removing arcs
that cannot be used after the current time ¢, based on their latest departure time. Finally, for
each edge (j,k) € &, we consider a constant cost. A basic definition of this constant cost is
mingepe, 1,) ¢k (t). We improve this definition by tightening /; to the latest departure time from
J to reach k no later than [while leaving j no later than [;.

Given G, we may compute different bounds that provide different trade-offs between com-
putational cost and tightness. In [6], we fully describe three different lower bounds: frpga that
checks in constant time that each vertex in V, \ {n} (resp. Vs \ {i}) has at least one outgoing
(resp. incoming) arc in &, fora that computes in linear time the sum of the minimum-weight
outgoing arc for each node in V; \ {n} and the sum of the minimum-weight incoming arc for
each node in Vs \ {i} and returns the maximum of these two sums, and fyga that computes
in O(#E&;log #Vs) the minimum spanning arborescence rooted at i in Gj.

Hybridization with Local Search. To converge faster towards good solutions, we try to
improve each solution provided by ACS using a LS procedure similar to the one used by [5]
for the TSPTW. Sets £ and R are used to reduce the size of the neighborhoods. We use the
First Improvement strategy, i.e., we accept improving moves until reaching a local optimum.

3 Experimental Results

Considered approaches. We consider two variants of our approach that only differ on
the computation of the lower bound f: FEA (resp. OIA) denotes the variant obtained when
f = frea (resp. f = fora). Results for f = fyga are omitted as this bound rarely obtains
better results than when f € {frga, fora}. Our approach is compared to the ILP approaches
of [1] and [I5], respectively denoted ArI18 and Vu20.

‘ Solved instances ‘ Reference solutions

| orag OIA; OIAy OlAj OIA | OIAg OIA; OIAy OlA; OIA
B ‘#5 ts #s ts s ts #s ts #s ts ‘ #ro b #ro e fro G #ro b #rot
0 0 -0 - 13579 1 3575 59 1035| 33 916 54 679 51 637 51 565 60 28
.25 0 52 1497 55 1337 55 1337 60 258| 59 83 60 23 60 26 60 24 60 9

50 | 46 1595 60 25 60 17 60 17 60 6/ 60 1 60 0 60 0 60 O 60 O
Total‘ 46 112 116 116 179 ‘152 174 171 171 180

TAB. 1: Performance of OIA variants on Bag;is with n = 31 (60 instances per value of 3).

Benchmarks. The benchmark used by [I] to evaluate ARI1S8 is denoted Bagng. It is ran-
domly generated according to the following parameters: the number of vertices n € {21, 31,41},
the congestion factor A € {.7,.8,.9,.95,.98}, the traffic pattern P € {Bj, By} and the TW
tightness 5 € {0,.25,.50,1} (the smaller 3, the wider the TWs). There are 30 instances for
each combination (n, 3, A, P), leading to a total of 3600 instances.

In [I5], this benchmark is extended to instances with n € {60, 80,100} and tight TWs only.
This benchmark is denoted By yag.

Considered hardware and performance measures. FEA and OIA are run on 2.1GHz
Intel Xeon E5-2620 v4 processors with 64GB RAM. Run times of ARI18 and VU20 are those
reported by [I] and [I5], as source codes are not available: ARI18 is run on a 2.33GHz Intel
Core 2 Duo processor with 4GB RAM and VU20 on a 3.4GHz Intel Core i7-2600 processor.
An instance is considered solved by an approach whenever it finds the optimal solution and
proves its optimality within one hour. #s denotes the number of solved instances, and ts the
average solving time for the solved instances. #r denotes the number of instances for which
the approach has found the reference solution (i.e., the best known solution), and ¢, denotes
the average time needed to find the reference solution for these instances. When displaying
performance measures of different approaches, we underline the maximal value of #s or #r
and we highlight in blue (resp. green) the smallest value of ¢; (resp. t,) among all approaches
that maximize #s (resp. #r). Note that for ARI18 and VU20, #r and ¢, are not available.

Analysis of the algorithm’s components. ACS is combined with three key components
described in Section [2] i.e., TW constraint propagation, LS and the filtering of edge set &,
used to compute f. To evaluate the relevance of these components, we report results obtained
with different variants obtained by disabling them. We consider the following variants of fora
(conclusions are similar using fpga): in OIAg, all key components are disabled; O1A; is obtained
from O1A(by enabling TW constraint propagation before starting the search; 01A5 is obtained
from 01A; by also enabling TW constraint propagation during the search; OIA3 is obtained
from OIAs by enabling LS, and O1A is obtained from OIA3 by enabling the filtering of &;.

In Table [l we display performance measures of these variants on a representative subset of
Barns. The left-hand side of Table [I| shows that all components except LS improve solving
performance. Similarly, the right-hand side of Table [I] demonstrates that all components
improve convergence speed, except the propagation of TW constraints during the search.

Experimental Comparison with ARI18. We now compare our approach with ARI18 on
benchmark Bagrpig. In Table we report the number of solved instances and the solving
time of ARI1S8, FEA, and OIA. When n < 31, most instances are solved relatively quickly by
FEA and OIA. Generally, both bounds provide different trade-offs between solving abilities,
convergence speed, and memory use.

Overall, OIA solves 701 more instances than ARI18 on the full benchmark. Even if ARI18
has been run on a different computer, on most instance classes the difference in solving times
cannot come from this sole fact. However, when n = 41 and § € {0,0.25}, only 17 (resp.
5) instances are solved by FEA (resp. OIA) whereas ARILS8 is able to solve 241 instances. Of
course, when an instance is not solved, our approach has found an approximate solution, as

‘ Solved instances ‘ Ref. solutions

| AR118 FEA OIA | FEA OIA
n Bl #s t #s b #s L] #r b #r b =5 F=5
21 0| 248 660 300 1 300 1300 0 300 0 B\A.7U.80.90.95 .98 .70 .80 .90 .95 .98 Total
250 286 383 3000 0 300 0/ 300 0300 0 ARS8 0 [6 81019 28 1 0 31223 110
50[206 289 300 0 300 0/ 300 0 300 0 25 6 8132329 1 0 51630 131
1]300 29 300 0 300 0 300 0 300 O .50 1 2 4 918 1 0 2 513 55
1 14 11 14 12 29 8 4 3 4 7 106
31 0] 1551631 300 614 292 997| 300 85 300 30
25| 1991274 300 163 300 257| 300 22 300 7 Total 27 29 41 63104 11 4 13 37 73
50| 1571433 300 4 300 6/ 300 1 300 O FEA 0 [0 0 00 000000 O
1] 233 608 300 0 300 0] 300 0 300 O .25 1111 2 3 2 2 2 2 17
10| 10BBE 0 . o0 . 173463 25lEEA 50 24 25 25 25 25 28 25 25 25 25 252
25/ 1311950 172747 52732| 205267 288235 130 30 30 30 30 30 30 30 30 30 300
50l 552276 252 511 280 614| 299 57 300 5 Total 55 56 56 56 57 61 57 57 57 57
1] 106 528 300 0 300 0] 300 0 300 O

(b) Number of instances solved by ARI18 and FEA
Total‘2276 2969 2977 ‘3377 3539 with respect to P, A and 3 for n = 41 (30 instances

(a) Results of ARI18, FEA, and OIA (300 inst. per row) Pe€r class)

TAB. 2: Performance on Bagpis.

shown on the right-hand side of Table The success of ARILS is strongly related to A as
it relies on bounds which are tighter when A is closer to 1. To illustrate this, we detail in
Table [2b| the number of solved instances for each value of A and each traffic pattern P when
n = 41. It shows us that ARIL8 is very sensitive to A and P, whereas the success of our
approach mainly depends on the TW width § instead. Our approach indeed has comparable
performance when using the realistic benchmark [I3] with similar TWs, which (i) was generated
using a realistic traffic simulator and (ii) models the fact that the fastest path between two
customers may change depending on the departure time. In this benchmark, A never exceeds
0.35. Given that the performance of ARI18 drops when A < 0.9 (see Table , difficulties
can be excpected from this approach when trying to solve these instances.

Experimental Comparison with VU20. Let us now compare our approach with Vu20
on benchmark Byyog which has more customers but tighter TWs. FEA solves all 720 instances
in 5s on average, whereas OIA (resp. VU20) solves all but 1 (resp. 19) in 11s (resp. 203s) on
average. FEA is always at least ten times as fast as VU20. This difference is large enough to
allow us to conclude that FEA is more efficient than VU20 even though the two approaches
have been run on different computers. Also, all reference solutions are found in a matter of
seconds for both FEA and OIA.

Experimental evaluation on the TSPTW. We also compared our approach on TSPTW
benchmarks (with constant cost functions), both with the LS-based approach of [5] (denoted
DAS10) and with the recent exact approach of [§] (denoted GIL21). We considered a classical
set of benchmarks (592 instances containing up to 400 nodes), and all algorithms ran on the
same hardware. We only report general conclusion due to space limits. Both FEA and oO1A
outperform GIL21 in terms of optimality proofs, as they respectively solve 96%, 96% and 61%
of the instances. FEA and OIA find all reference solutions whereas GIL21 does not find 2%
of them. DAsS10 is competitive with our approach for very short execution times, but it does
not find the reference solutions for 8% of the instances. Finally, let us note that our approach
requires less memory than GIL21, but more than DAS10.

4 Conclusions and perspectives

We have introduced a new approach for the TD-TSPTW which combines ACS, TW constraint
propagation, and LS. This approach is both able to quickly find good solutions and to prove

optimality given enough time and memory. We considered multiple bounds providing different
trade-offs and experiments have shown us that fora offers a good compromise between tightness
and computational cost. Our approach outperforms the ILP approach of [I5] on all instances
of Byyoo which have very tight TWs. It also outperforms the ILP approach of [I] on most
instances of Bagis: it is outperformed on the largest instances that share similar congestion
patterns (i.e., when A > 0.95), but benchmarks generated from real data have much smaller
values of A. Our approach may also be used to solve the TSPTW and we have shown that it
outperforms the DP-based approach of [§] and the LS-based approach of [5].

We plan to extend our approach to other TD problems such as, for example, VRPs and
Pickup and Delivery Problems, and to compare ACS with other anytime A*-based approaches
such as the one of [10].

References

[1] A. Arigliano, G. Ghiani, A. Grieco, E. Guerriero, and I. Plana. TD-ATSPTW: Properties and
an exact algorithm. DAM, 261:28-39, may 2018.

[2] R. Bellman. Dynamic Programming Treatment of the Travelling Salesman Problem. Journal of
the ACM (JACM), 9(1):61-63, 1962.

[3] D. Bergman, A. A. Ciré, W. J. van Hoeve, and J. Hooker. Decision Diagrams for Optimization.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, 2016.

[4] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the computation
of bounds to routing problems. Networks, 11(2):145-164, 1981.

[5] R. F. Da Silva and S. Urrutia. A General VNS heuristic for the traveling salesman problem with
time windows. Discrete Optimization, 7(4):203-211, 2010.

[6] R. Fontaine, J. Dibangoye, and C. Solnon. Exact and Anytime Approach for Solving the TD-
TSPTW. Technical report, Université de Lyon ; INSA Lyon ; INRIA, November 2022.

[7] M. Gendreau, G. Ghiani, and E. Guerriero. Time-dependent routing problems: A review. Com-
puters and Operations Research, 64:189-197, 2015.

[8] X. Gillard, V. Coppé, P. Schaus, and A. A. Cire. Improving the Filtering of Branch-and-Bound
MDD Solver. CPAIOR, 12735 LNCS:231-247, 2021.

[9] S. Ichoua, M. Gendreau, and J. Y. Potvin. Vehicle dispatching with time-dependent travel times.
EJOR, 144(2):379-396, 2003.

[10] L. Libralesso and F. Fontan. An anytime tree search algorithm for the 2018 ROADEF/EURO
challenge glass cutting problem. EJOR, 291(3):883-893, 2021.

[11] C. Malandraki and M. S. Daskin. Time dependent vehicle routing problems: Formulations,
properties and heuristic algorithms. Transportation Science, 26(3):185-200, 1992.

[12] C. Malandraki and R. B. Dial. A restricted dynamic programming heuristic algorithm for the
time dependent traveling salesman problem. EJOR, 90(1):45-55, 1996.

[13] O. Rifki, N. Chiabaut, and C. Solnon. On the impact of spatio-temporal granularity of traffic
conditions on the quality of pickup and delivery optimal tours. Transportation Research Part E:
Logistics and Transportation Review, 142, 2020.

[14] S. G. Vadlamudi, P. Gaurav, S. Aine, and P. P. Chakrabarti. Anytime Column Search. In AJ
2012: Advances in Artificial Intelligence, volume 7691 of LNCS. Springer, 2012.

[15] D. M. Vu, M. Hewitt, N. Boland, and M. Savelsbergh. Dynamic Discretization Discovery for
Solving the TD-TSPTW. Transportation Science, 54(3):703-720, 2020.

	Introduction
	New Approach for the TD-TSPTW
	Experimental Results
	Conclusions and perspectives

