
Winning Approach for the EURO-NeurIPS 2022 Dynamic
Vehicle Routing Competition

Léo Baty1, Kai Jungel2, Patrick Klein2 Axel Parmentier1, Maximilian Schiffer2

1 CERMICS, École des Ponts, France
{leo.baty, axel.parmentier}@enpc.fr

2 Technical University of Munich (TUM), Germany
{kai.jungel, patrick.sean.klein, schiffer}@tum.de

Mots-clés : combinatorial optimization, machine learning, vehicle routing, multi-stage opti-
mization, hybrid genetic search, EURO-NeurIPS challenge

1 Introduction

The EURO meets NeurIPS 2022 Vehicle Routing Competition1 focuses on the usual static
Capacitated Vehicle Routing Problem with Time Windows (VRPTW), as well as a dynamic
variant which is the focus of this paper.

The objective of the dynamic VRPTW is to build routes for a fleet of capacitated vehicles,
in order to serve all customer requests within their given time windows. The objective is
to minimize the total travel time. However, requests are not known in advance: they arrive
continuously during the day. Every hour, the decision maker chooses which requests to dispatch
and builds routes to serve them. Each request must be served before the end of its time window.
A request whose time window allows serving it during the next hour can be postponed. Once
a route has been built, it cannot be modified.

The static VRPTW has been extensively studied in the literature, including exact ap-
proaches [5], as well as heuristic ones, among which the hybrid genetic search [6, 4]. This
can be seen in the results of the challenge: the objective of the algorithm proposed by the
5th team on the static problem is 0.02% worse than the best solution found. The question
of building an efficient heuristic for the dynamic problem remains far more open: the policy
proposed by the 5th team is 4% worse than the best proposed.

Our main contribution is a policy for the dynamic VRPTW. It relies on a Deep Learning
pipeline with a prize collecting VRPTW combinatorial optimization layer. It ranked first of the
EURO-NeurIPS competition, both the on dynamic problem ranking and the global ranking.
This pipeline requires a subroutine for solving the prize collecting VRPTW, for which we
introduce the prize collecting hybrid genetic search, a variant of the hybrid genetic search [6]
adapted for the prize collecting VRPTW. As a side contribution, we implemented an extension
of the InferOpt.jl Julia library [3] with a generic support for generalized combinatorial
optimization oracles, and in particular for training our pipeline.

In Section 2, we introduce the dynamic VRPTW and the notations. Section 3 details each
component of our deep learning pipeline, while Section 4 explains the learning approach used.
Finally, Section 5 presents our team results at the end of the challenge.

1See https://euro-neurips-vrp-2022.challenges.ortec.com/

https://euro-neurips-vrp-2022.challenges.ortec.com/


2 Dynamic VRPTW: problem statement
Definitions Let [T ] be the discrete time horizon divided into 1-hour epochs. A request
contains four components: coordinates p, a time window [`, u], a demand value q, and a service
time s. Travel time between locations p and p′ is denoted by dp,p′ . A route is a sequence of
requests starting from and ending at the depot (denoted by p0). When a feasible route is built,
each request of the route is said to have been served.

Dynamic problem The dynamic VRPTW can be modeled as a Markov Decision Process.
The state xt of the system at a given epoch t is entirely defined by its set of requests, composed
of the requests arrived at epoch t, and those arrived before but not yet served.

At each epoch t, the decision maker chooses an action: he decides to build routes to serve
some requests from xt. A route built in epoch t cannot start before t + 1. A given request
(p, [`, u], q, s) is feasible at epoch t if we can build a route to serve it in time, i.e. if we can
reach it from the depot starting at t+ 1:

dp0,p + t+ 1 ≤ u. (1)

Some requests from xt must be served during this epoch, otherwise they become unfeasible
in the next epoch and violate (1). We denote by Mt ⊂ xt this set of must-dispatch requests.
Let R(xt) be the set of feasible routes for state xt (i.e. following demand and time window
constraints), and dr the total travel time duration of a feasible route r. For each epoch t ∈ [T ],
we define decision variables yt,r ∈ {0, 1}, equal to 1 if and only if the route r ∈ R(xt) is chosen
at t. Each request can be served at most once, except for must-dispatch ones which need to be
fulfilled exactly once. The set of feasible decisions is denoted Y(xt). This leads to the following
constraints on these decision variables:∑

r3v
yt,r ≤ 1, ∀t ∈ [T ], v ∈ xt\Mt, (2a)

∑
r3v

yt,r = 1, ∀t ∈ [T ], v ∈Mt. (2b)

When taking decision yt at time t in state xt, a cost
∑
r∈R(xt) dryt,r is incurred. Additionally,

all served requests (denoted Yt) are removed, and, new requests At+1 arrive at the start of the
next epoch t+ 1.

xt+1 = At+1 ∪ xt\Yt, ∀t ∈ [T − 1],
x1 = A1.

(3)

A policy π is defined as a mapping from states xt to probabilities π(y|xt) of selecting each
given decision y ∈ Y(xt) in the current state xt:

yt ∼ π(·|xt), ∀t ∈ [T ]. (4)

Therefore, the dynamic VRPTW can be formulated as

min
π∈Π

Eπ

∑
t∈[T ]

∑
r∈R(xt)

dryt,r

 (5)

with Π the set of all possible policies.
A deterministic policy πd is defined as a mapping from states xt to decisions yt ∈ Y(xt).

Challenge instances In the challenge, newly arrived requests At are drawn from an asso-
ciated static VRPTW instance with N requests (pi, [`j , uj ], qk, sl)i∈[N ]. At each epoch t, 100
requests are uniformly drawn from {(pi, [`j , uj ], qk, sl) | (i, j, k, l) ∈ J1, NK4}, and only feasible
requests following (1) are kept. The associated static instance (and therefore the full request
probability distribution) is known at the start of the time horizon and can be used by the
policy.



3 Our policy based on a Deep Learning pipeline
Pipeline The set of feasible decisions Y(xt) corresponds to the feasible set of a prize collecting
(static) VRPTW. Indeed, in a prize collecting VRPTW, the decision maker selects requests
v to serve from a set of available requests xt in order to maximize its profit, which is the
difference between the prizes θv collected for serving selected requests v and the driving costs
duv incurred when driving between requests u and v along built routes.

We therefore propose a policy that solves a prize collecting VRPTW at each epoch to make
its decision. This requires to build a complete prize collecting VRPTW instance from the
epoch state xt defined in previous Section 2. Unfortunately, while xt is naturally defined as
the set of requests arrived but still not dispatched before t, and (duv)(u,v)∈x2

t
as the travel cost

matrix between requests, there is no natural definition of the request prizes θv. For this, we use
a neural network ϕw to compute (θv)v∈xt given the epoch state xt. Our deterministic policy
πd
w which maps a state xt to a decision yt ∈ Y(xt) consists in the following pipeline:

State−−−→
xt

�



�
	Neural Network

ϕw

Requests prizes−−−−−−−−−→
θv , ∀v∈xt

Prize Collecting
VRPTW f

Epoch routes−−−−−−−→
yt

(6a)

πd
w : xt 7−→ yt = f(ϕw(xt)) (6b)

Our policy is therefore parametrized by the network weights w.

Two challenges must still be addressed. First, we must propose an algorithm f to solve the
prize collecting VRPTW. For this purpose, we adapt the hybrid genetic search of [6] to that
problem. Second, the policy being parametrized by the weights w of the neural network, we
must therefore find weights w that lead to a practically efficient policy. The learning approach
is detailed in Section 4.

Prize Collecting Hybrid Genetic Search From now on, instead of considering the set
partitioning formulation (5), we use a compact formulation and embed decisions Y(xt) to
{0, 1}x2

t . Binary decision variables (yu,v)(u,v)∈x2
t
are equal to 1 if a chosen route chains requests

u and v, and 0 otherwise. The prize collecting VRPTW, can be written as

max
y∈Y(xt)

∑
(u,v)∈x2

t

(θv − du,v)yu,v. (7)

The combinatorial optimization oracle f introduced in (6) is therefore defined as

f : θ 7−→ argmax
y∈Y(xt)

θ>g(y) + h(y), (8)

with g(y) = (
∑
u∈xt

yu,v)v∈xt , and h(y) = −
∑

(u,v)∈x2
t
du,vyu,v. Note that h also depends on the

cost matrix, which is omitted for notation simplicity. g(y) can be interpreted as the dispatch
decision: each of its components v is equal to 1 if and only if the request v is served. −h(y) is
the incurred travel cost.

In order to solve this problem, we use a prize collecting hybrid genetic search, a variant of
the state-of-the-art hybrid genetic search [6] algorithm for the static VRPTW. A usual hybrid
genetic search is a genetic algorithm. It maintains a population of solutions at each iteration,
which evolves with crossover and mutation operations as in usual genetic algorithms, but are
also combined with a neighborhood search heuristic.

First, our algorithm extends the solution encoding in order to account for optional customers:
we add a request set to the encoding, which determines the set of customers served by the
solution. Second, from the two crossover operators, we remove one because experiments showed
that it did not contribute to the algorithm’s performances for our instances. We also modify
the second crossover operator such that is preserves the request set of the first parent. Finally,



we introduce two new mutation operators that modify the request set. The first operator
either removes some served customers from the request set, or inserts some currently unserved
customers into the request set. The second operator optimizes the request set of a given
solution: it first removes any customer causing incurring a cost higher than the customer’s
profit, and then reinsert any profitable customer which is not part of the current solution. The
operator perturbs insertion and removal costs with a random factor. We apply the second
operator only after the neighborhood search converges, in order to avoid removing an excessive
amount of customers due to poor solution quality.

4 Learning approach
In order to achieve good performances with our policy (6), we need to find weights w of the
neural network ϕw, such that output routes yt of our pipeline are a good policy for any input
instance. Our learning approach is to train our pipeline to imitate the decision taken by an
anticipative policy.

Anticipative policy imitated and training set generation On a given instance, we can
draw a full scenario (all the arriving request at each epoch). We then solve the full instance
using a hybrid genetic search. In order to obtain a feasible solution of the dynamic problem
for the drawn scenario, we modify time windows such that requests arriving at a given epoch
cannot be served by a route starting before it. We rebuild the decisions that would have been
taken at each epoch an obtain a solution. Note that this corresponds to an anticipative policy
which cannot be used in practice because it needs to know in advance all arriving requests.
However, we can use it to build a dataset of instances labeled with route decisions we want to
imitate. We denote this dataset as

D = {(x1
t1 , y

1
t1), . . . , (xntn , y

n
tn)}. (9)

Learning problem Usually, in classical supervised learning, the learning problem is formu-
lated by defining a loss function L that measures output quality, and finds w? minimizing it
on the known training data D:

w? = argmin
w

n∑
i=1
L(ϕw(xiti), y

i
ti). (10)

The optimization problem (10) is usually solved using a gradient algorithm that relies on
automatic differentiation to back-propagate gradients through the pipeline.

Loss function In order to imitate target solutions (yiti)i∈[n] of our dataset, we want them to
be as close as possible to the optimal solutions of (8). A natural loss function is therefore the
non-optimality of the target epoch routes yt respect to the combinatorial optimization oracle:

L(θ, yt) = max
y∈Y(xt)

{θ>g(y) + h(y)} − (θ>g(yt) + h(yt)) (11)

Unfortunately, L is not smooth and θ = 0 is an optimal solution, which leads to difficult
gradient optimization. This is due to the combinatorial layer f being piecewise constant.

A regularization approach has been recently introduced in the literature [1] to smooth linear
optimization oracles of the form θ 7→ argmaxy θ>y. It consists in perturbing θ with an additive
noise. We extend this setting to oracles which are affine in θ but not necessarily linear in y,
which is exactly the form of (8). The perturbed combinatorial optimization oracle is defined
by

f̂ε : θ 7−→ E
[
argmax
y∈Y(xt)

(θ + εZ)>g(y) + h(y)
]

= E[f(θ + εZ)], (12)



with Z ∼ N (0, 1) an additive Gaussian perturbation, and ε ∈ R+ a fixed hyperparameter.
In practice, the expectation in (12) is intractable, but can be approximated by Monte-Carlo
sampling. The associated regularized loss is defined as follows:

LFYε (θ, yt) = E
[

max
y∈Y(xt)

(θ + εZ)>g(y) + h(y)
]
− (θ>g(yt) + h(yt)). (13)

This loss is differentiable, and admits the following subgradient

g(f̂ε(θ))− g(yt) ∈ ∂θLFY
ε (θ, yt). (14)

This loss can be shown to have nice properties using Fenchel Duality, which is the reason
why it is called a Fenchel-Young loss [2]. We denote by Ωε the Fenchel conjugate of θ 7→
E
[
maxy∈Y(xt)(θ + εZ)>g(y) + h(y)

]
. We have that θ 7→ LFY

ε (θ, yt) + Ωε(yt) is positive by
Fenchel’s inequality, convex, and the minimum 0 is reached at θ if and only if g(f̂ε(θ)) = g(yt).

Support for generalized maximizer oracles of the form θ 7→ argmaxy θ>g(y) + h(y) has
been implemented in the open source Julia library InferOpt.jl [3]. The implementation is
generic and not only specific to the prize collecting VRPTW. Note that for the challenge,
we used the Julia implementation for prototyping, and a specific Python implementation for
hyperparameter optimization and easier compatibility with the challenge’s code environment.

Inexact oracle In this section, we did not mention that the prize collecting hybrid genetic
search is an inexact combinatorial oracle: it’s a (meta)heuristic algorithm which does not
necessarily output an optimal solution, but only a “good” feasible solution of the prize collecting
VRPTW (8). However, this is not a problem in practice: [3] shows that the computed gradient
with an inexact oracle is a good approximation of the real one when the inexact oracle outputs
solutions close enough to optimal ones.

5 Results

Dataset On average, a problem duration is around 6 epochs. Our dataset consists in all
epochs from 20 dynamic instances, that is 110 training samples. Label target solutions yt are
built by drawing only 60 new requests at the start of each epoch instead of 100 in the challenge
evaluation. These smaller instances enable the prize collecting hybrid genetic search to output
solutions closer to the optimal ones, which helps the learning process. We observe that our
pipeline trained on smaller instances generalizes quite well on larger ones.

Neural Network architecture and hyperparameters We use a classical multi-layer per-
ceptron as our neural network architecture. It’s a small network composed of 4 layers with
output size 10 each, and a final layer with output size 1. We use ReLU as activation function,
and the Adam optimizer with 0.01 learning rate. We use ε = 1, and 20 samples for the Monte
Carlo evaluation of the expectation in (12). Finally, the runtime for the prize collecting hy-
brid genetic search during training is set to 120 seconds, in order to ensure convergence of the
heuristic. We selected the weights w from the training epoch 61, which was the one performing
best when evaluating on a separate validation dataset.

Results With our team Kléopatra, we ended up at first place on the final leaderboard,
including 2nd place on the static VRPTW, and 1st place on the dynamic VRPTW (see Table 1).



Rank Team name Dynamic cost Static rank Dynamic rank
1 Kléopatra 348831.56 2 1
2 OptiML 359270.09 1 3
4 Team_SB 358161.36 3 2
3 HustSmart 361803.57 5 4
5 Miles To Go Before We Sleep 369098.13 4 7

TAB. 1: Top 5 teams of the final leaderboard

For a more detailed benchmark, we evaluate our policy on 2252 instance-seed combinations,
against the 5 baseline strategies given by the challenge organizers, as well as the anticipative
policy. For each combination and strategy, we evaluate the gap to the best solution found
of all strategies, and display a box plot of this metric in Figure 1 below. Our learned policy
performs better than all five baseline strategies, with an average gap of 4.4% respect to the
best solution found, and is relatively close to the anticipative policy.

anticipative our policy dqn greedy supervised random lazy

0%

20%

40%

60%

80%

100%

120%

ga
p

to
an

tic
ip

at
iv

e
po

lic
y

FIG. 1: Box plot comparing the gap in % to the anticipative policy. Crosses give mean values.

References
[1] Quentin Berthet et al. “Learning with Differentiable Perturbed Optimizers”. en. In: arXiv

(June 2020). url: http://arxiv.org/abs/2002.08676 (visited on 02/01/2022).
[2] Mathieu Blondel, André FT Martins, and Vlad Niculae. “Learning with Fenchel-Young

losses.” In: J. Mach. Learn. Res. 21.35 (2020), pp. 1–69.
[3] Guillaume Dalle et al. Learning with Combinatorial Optimization Layers: a Probabilistic

Approach. arXiv:2207.13513 [cs, math, stat]. July 2022. doi: 10.48550/arXiv.2207.
13513. url: http://arxiv.org/abs/2207.13513 (visited on 10/07/2022).

[4] Wouter Kool et al. “Hybrid Genetic Search for the Vehicle Routing Problem with Time
Windows: a High-Performance Implementation”. In: (2022).

[5] Artur Pessoa et al. “A generic exact solver for vehicle routing and related problems”.
en. In: Mathematical Programming 183.1 (Sept. 2020), pp. 483–523. issn: 1436-4646. doi:
10.1007/s10107-020-01523-z. url: https://doi.org/10.1007/s10107-020-01523-z
(visited on 11/14/2022).

[6] Thibaut Vidal. Hybrid Genetic Search for the CVRP: Open-Source Implementation and
SWAP* Neighborhood. arXiv:2012.10384 [cs]. Oct. 2021. doi: 10.48550/arXiv.2012.
10384. url: http://arxiv.org/abs/2012.10384 (visited on 09/30/2022).

http://arxiv.org/abs/2002.08676
https://doi.org/10.48550/arXiv.2207.13513
https://doi.org/10.48550/arXiv.2207.13513
http://arxiv.org/abs/2207.13513
https://doi.org/10.1007/s10107-020-01523-z
https://doi.org/10.1007/s10107-020-01523-z
https://doi.org/10.48550/arXiv.2012.10384
https://doi.org/10.48550/arXiv.2012.10384
http://arxiv.org/abs/2012.10384

	Introduction
	Dynamic VRPTW: problem statement
	Our policy based on a Deep Learning pipeline
	Learning approach
	Results

