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Abstract : Drone-based delivery has gained popularity in recent years, and many different
delivery systems and schemes have been proposed. One of the most promising scheme concepts
is based on the collaboration between a drone and a public transportation network to expand the
delivery range while conserving drone battery energy and reducing delivery costs. Path planning
is the main problem with this design, as the public transportation network is stochastic and time-
dependent. In this paper, an inspection time-adapted early arrival path problem is formulated,
which seeks the path for a drone that ensures: (i) reaching the customer as soon as possible,
(ii) adapting to random fluctuations in public transportation schedules, and (iii) taking into
acount the battery consumption of the drone. To achieve these requirements, a Q-learning-based
planning method is proposed. The simulation results validate the effectiveness and feasibility of
Q-learning on the planning path for parcel deliveries: at any departure instant, the arrival of
the drones at the customer’s location was guaranteed, i.e., the resulting path is 100% reliable.
In addition, the convergence of the Q-Learning algorithm was reached after only 1000 learning
epochs. Furthermore, the experimental results show that the Q-Learning solution can achieve
a lower early arrival time and lower power consumption compared to another algorithm.
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1 Introduction
With the increasing involvement of drones in civilian domains such as surveillance [5], wireless
communications [2], and package delivery [4], several new research directions have been opened.
Recently, many researchers and logistics companies have been interested in researching and
testing unmanned aerial vehicles (UAVs) in last-mile delivery systems [4]. As a result, several
schemes based on drones have been proposed with various benefits and drawbacks. A first
scheme focuses on using drones only to deliver parcels from the warehouse to the customer [1],
thus resulting with a quick delivery process with little human labor. However, the delivery
range is limited due to the restricted battery of the drone. To increase delivery range, a new
scheme (see [3]) used trucks to transport the drones to specific points near the customers,
and then the drones took off from the trucks to deliver parcels to customers. Obviously, the
primary drawbacks of this scheme are the high operating costs induced by truck driver expenses
and fuel costs. A third method proposed to avoid these impacting costs as well as increase
the delivery area of drones, is to utilizing public transportation vehicles as drone transporters
during daily journeys [6]. The present work focuses on this scheme.

The main challenge facing this scheme is path planning. Indeed, public transportation
vehicles have pre-determined routes and timetables that logistics companies cannot control.
Additionally, the travel time of a vehicle between two stations depends on the instant of
departure and is stochastic as it is affected by time uncertainties such as traffic congestion,
vehicle breakdowns, etc. Therefore, computing a path offline (i.e., before the drone leaves the
warehouse) is far from optimal due to the stochastic nature of the transportation network.



Online path planning is a more efficient option and it is based on the drone communicating
with public transportation and collecting real-time information to adapt its path. Logistically,
many suppliers prefer to deliver their parcels as quickly as possible to satisfy their customers,
which leads to the problem of planning an early arrival path rather than the shortest path.
Alternatively, they also want to serve all consumers, including those far from the warehouse;
therefore, the delivery path for them will be longer, resulting in more energy consumption.
Therefore, the capacity of the drone battery must be taken into account during the path
planning.

To the best of our knowledge, a path planning problem that considers the stochastic time-
dependent public transportation network and the optimization of both the delivery time and
the drone battery life capacity together has not been examined. In this paper, we address the
time-adapted early arrival path planning for drone parcel delivery via public transportation.
Q-Learning is a popular method for solving this type of path planning problem. The reason of
this is its ability to solve optimization problems in an unmodeled environment, as well as its
adaptability to change the environmental conditions. The idea is to obtain the optimal policy
by selecting the best actions to reach a defined location based on the observed state of the
environment as well as on the accumulated historical experience. Therefore, we are motivated
to use Q-learning to find the earliest arrival path for the drone from the warehouse to the cus-
tomer, with the goal of minimizing arrival time to the customer and energy consumption. The
main contributions of this paper are summarized as follows: (i) We introduce a new problem
statement regarding the determination of the time-adapted earliest arrival path in a stochastic
time-dependent parcel delivery system that combines a public transportation network and a
drone, (ii) We formulate a path planning problem as a multiobjective problem, in which one
must search for the optimal path that minimizes both the arrival time to reach the customers
and the amount of energy consumed, (iii) The Q-learning algorithm is proposed and tested to
validate its efficiency and feasibility on the planning path compared to the random approach

The remainder of this paper is organized as follows. The system model and problem state-
ment are described in Section 2. Section 3 presents the proposed Q-learning algorithm for
finding the earliest-arrival path. In Section 4, simulation results are analyzed and conclusions
of the paper are drawn in 5.

2 System Model and Problem Statement

Let G(V, E, Ω) denotes the system model, where V is the set of nodes that comprise trans-
portation stops, warehouses, and customers. E is the set of links between pairs of nodes, which
represent the links between two stops through the lines of the transportation network, or direct
links by drone fly between the various nodes. E = {≺ v, v′, li, tj ≻ |v, v′ ∈ V, li ∈ L, tj ∈ T li}
where li denote the public transport line number i, l0 the direct unmanned flight and L is
the set of these lines. Whereby, tj denotes trip number j on one of the lines (there are
several trips per day on each line). We denote T li as the set of trips on line li. Let Ω de-
notes a set of weights between pairs of nodes. It represents the traversal time between nodes:
Ω = {ω

litj

vv′ |v, v′ ∈ V, li ∈ L, tj ∈ T lj }. Additionally, for the traversal time, we define two
functions that represent the arrival and departure time of trip tj of line li at node v, α(li, tj , v)
and τ(li, tj , v), respectively. (when next trip is li=l0 then τ − α = 0 i.e. no waiting time)

Définition 1 We define path puv between pair of nodes u = n0, v = nm ∈ V in G as a
sequence of links (nz, nz+1, li, tj) ∈ E as: puv =

{
(u, n1, li, tj), (n1, n2, li′ , tj′ )..(nm−1, v, lm, tk)

}
where each consecutive couple of links in this path should satisfies (1).

∀(nz, nz+1, li, tj), (nz+1, nz+2, li′ , tj′ ) ∈ puv : α(li, tj , v′) ≤ τ(li′ , tj′ , v′) (1)

In the rest of the paper, we define Puv as set of all possible paths from u to v.



2.1 The earliest-arrival path

When dealing with a drone-based delivery system, the goal is to get parcels to customers as
early as possible, which raises the issue of calculating the shortest path. However, in a system
that combines public transportation and drones, our problem is not only dependent on traversal
time, but also on the departure and arrival times of transportation vehicles. As a result, in
this work, we addressed the earliest-arrival path problem.

Définition 2 The earliest-arrival path p∗
uv is the path that provides the earliest arrival time

from a source u to a target v. i.e., the following condition is satisfied:

∀p ∈ Puv : α(l∗, t∗, v) ⩽ α(l, t, v)|t∗ ∈ p∗
uv, t ∈ puv (2)

2.2 Drone energy model

For the energy consumption model, we consider hovering and flight as the main phases in
which the drone’s energy is consumed, while energy consumption is assumed to be zero when
the drone travels on top of a public vehicle. Note that the controller’s power usage is ignored.
Let ef and eh the energy consumed by the drone while flying and hovering, respectively. Then,
we can associate the drone’s energy consumption with traveling time. For that, let ep denote
the energy consumption along a path, which can be calculated as follows:

ep =
∑

(v,v′,li,tj)∈puv

(τ(li′ , tj′ , v) − α(li, tj , v))eh + ωlt
vv′ef (3)

Where the first term represent the energy spent on the waiting time for the trip tj of line li at
station v, equal to zero if l = l0. Whilst the last term represents the energy consumed during
the traveling between v and v′ through a trip tj of line li , equal to zero if l ̸= l0.

2.3 Problem statement

Now, for a given network G(V, E, Ω), t0 (instant when the customer makes order), and E0
(initial energy), the problem can be expressed as finding a path from the warehouse to the
customer such that the earliest arrival time and total consumed energy are minimized. To
do so, we use a weighted sum of these objectives and define the optimal path in terms of the
equations 2 and 3.

In his work, the optimization objective is:

p∗ = arg min
Puv

(γα(., ., v) + (1 − γ)ep) (4)

where Puv is all possible paths from u to v. γ is a user-defined parameter, γ ∈ [0, 1], such that
γ is used to determine a trade-off between energy and early arrival time. The larger the γ is,
the more the minimum arrival time is favored.

3 Q-learning for Time-adapted Early Arrival Path
In the literature, dynamic programming methods are generally used to exhaustively search for
the optimal path. In such works, the optimal path is calculated based on a priori information
(previously provided). It is known as offline path planning. However, when the uncertainty and
time dependency of public transportation, as well as the lack of information, are considered,
these methods become inefficient in such scenarios. In the present work, we used the Q-learning
algorithm to find the earliest arrival path for the drone. The main idea is to give the drone the
ability to determine its path and update it according to the information available in real time,
adapted to random changes in public transportation, which is known as online path planning.



3.1 The idea of Q-learning

Due to the capability of Q-learning to solve optimization problems without relying on the
environment model, we are motivated to use it for online path planning without the need to
model the uncertainty of public transportation times. In this work, we use a drone as an agent
to find the possible paths between the warehouse and the customer. It seeks to minimize arrival
time and the energy consumption. The Markov Decision Process (MDP) suitable for drone
path planning in our system can be defined by the following tuple < S, A, T, R >. Among
them, S is a finite set of states that represents stops, warehouses, and consumers. A is a finite
set of actions described by tuple < line, trip >, that represents transportation trips and flying
trips. T is the transition probability function, T : S × A × S → [0, 1], is the probability of a
drone to take a =< l, t > to move from state sk to state sk+1. R is the reward function will
be explained in 3.2.

3.2 Reward and Q-value functions

The reward function is a real-time reward. After the drone performs an action, i.e., choosing
a trip, the environment generates feedback on the chosen trip that is used to evaluate the per-
formance of the action. The reward function is the combination between energy consumption
and the related expected waiting and traversal times. It is designed as follows:

r =
{

γ(W + T ) + (1 − γ)eh × W if li ̸= l0
γT + (1 − γ)ef × T if li = l0

(5)

where W and T are the waiting time and traversal time of trip tj of line li, respectively.These
can be calculated as follows:

W = τ(≺ li, tj ≻, sk) − α(≺ li′′ , tj′′ ≻, sk), T = α(≺ li, tj ≻, sk+1) − τ(≺ li, tj ≻, sk),

Equation 5, when li ̸= l0 , means that the drone uses vehicles to travel as action, and the
related reward ignores the part corresponding to energy consumption during the fly, whereas
when li = l0, the drone performs flying travel trip as action, and the related reward ignores
the part corresponding to energy consumption during waiting time and the waiting time.

Similarly, the Q-value function is important in the Q-Learning method for problem solving.
In this paper, we use random values to initialize the Q-value at the beginning of learning.
Hence, during the learning progress in each action-selection the Bellman equation 7 is used to
update the estimated Q-value:

Qnew (sk, a⟩ = Qold (sk, a⟩ + λ

[
r + σ min

a′
Qold (sk+1, a′⟩ − Qold (sk, a⟩)

]
(7)

where a and a′ the current action and future action, respectively. Qold (sk+1, a′⟩ is the old
value, mina′ Qold (sk+1, a′⟩ is the estimate of optimal future value, λ and σ are the learning
rate and discount factor of the Q-learning algorithm, respectively. At the end of training, the
optimal Q-value function Q∗(s, ≺ li, tj ≻) (as given by eq. 8) is the maximum action-value
function over all policies.

Q∗(s, ≺ li, tj ≻) = min
a′

Q(sk+1, a′) (8)

Finally, the ϵ-greedy approach was used during the deployment of the Q-learnig learned model
to maintain a balance between exploration and exploitation. In other words, we use a random
generated value ∈ [0, 1[ and compare it to pre-defined ϵ (ϵ = 0.1 in our work ). When a
generated value is greater than ϵ, the action that corresponds to maximum Q-value be chosen,
rather than a random action. In this manner, the discrepancy between local optima is avoided.



4 Simulation Results

FIG. 1: Adopted network used
to illustrate how the proposed
Q-learning works

To demonstrate the effectiveness of the proposed Q-Learning
for the time-adapted early arrival path, we use the simple
network illustrated in Fig. 1. This network is made up of 5
public transportation stations, 1 warehouse, 1 customer, and
5 public transportation line (the label 0 indicates the drone
fly). Table 1 provide the mean and standard deviations of
the link traversal and departure instants times. The smaller
deviations are related to l0 as the drone flight links are more
reliable than public vehicles.

TAB. 1: The distributions of links traversal times and departure instants

Line Link Traversal times Departure instants
SS1 3(0.1)

L0 S2S4 6(0.2)
S4T 2(0.1)
S3S5 6(0.2)

L1 S1S2 13(2), 13(2),12(2), 11(1.5),11(1.5) -1(1), 9(1),19(1), 29(1), 39(1)
S2S4 10(2.5), 10(2.5), 11(2), 11(2), 10(2.5) 12(3), 22(3), 31(3), 40(2.5), 50(2.5)

L2 S1S3 15(1.4), 15(1.4), 16(1),16(1) -5(2), 2(2), 9(2), 16(1)
S3S5 10(1.3), 10(1.2), 10(1), 11(1.1) 10(3.4), 17(3.4), 25(3.4), 32(2)

L3 S3S2 5(1),7(1),7(1),6(1.5) 5(1),17(1.5),29(1),41(1)
L4 S4S5 7(1), 8(1.2), 8(1.2), 7(1.2), 7(1) 8(3), 19(3.2),29(2.7), 38(2.7), 48(2.5)

S5T 3(1), 3(1),3(1.2), 4(1), 4(1) 8(3), 19(3.2),29(2.7), 38(2.7), 48(2.5)
L5 S5S4 10(2),10(2),10(2),10(2) 5(1), 20(1), 35(1.5), 50(1.5)

S4T 5(1), 5(1), 5(1.2), 5(0.5) 15(3), 30(3), 45(3.5), 60(3.5)

(a) Path arrival and traversal
times

(b) Path traversal times and
consumed energy

(c) The convergence of Q-
learning.

FIG. 2: The simulation results of the Q-Learning. γ = 0.5

Figure 2(a) shows both the total time and the arrival times of a path from the warehouse
to the customer by using Q-learning algorithm, for different departure moments. From this
figure, we can remark that each departure time results in different traversal and arrival times,
which indicates that the routes in our system are time dependent. Fig 2(b) shows the travel
time and energy consumed on the path according to the different instants of departure. We
can remark that by using a static γ in the reward function that prioritizes traversal time
over power consumption, the Q-learning gives a small and approximately constant traversal
time as opposed to large and fluctuating power consumption. Additionally, Fig. 2(c) inves-
tigated the convergence of the learning algorithm. As we see, both the energy consumption
and the traversal time curves converge after 1000 iterations. The results presented in Fig.
2 prove that our inspection on time-adapted early arrival path problem is well formulated,
as well as prove the effectiveness of the proposed Q-learning-based algorithm to solve it.



FIG. 3: Comparison of the random algorithm and the pro-
posed Q-Learning

The results of Fig. 3 demonstrate
that the Q Learning solution is
able to achieve a lower early arrival
time and lower power consumption
compared to a semi-random algo-
rithm at any departure instant.
This is due to the fact that the
random algorithm selects the next
trip, from among the available
trips that do not backtrack, ran-
domly without looking at previ-
ous experiences, as opposed to the
suggested Q-learning, where next
trip choices are based on available
flights and previous Q-values.

5 Conclusion
An inspection on time-adapted early arrival path problem in drone-vehicles based delivery
schema, using public transportation, has been proposed in this paper. This path seeks to
guarantee an early arrival time for a drone delivery while minimizing energy consumption and
being resilient to stochastic fluctuations in public transportation schedules. The problem has
been formulated as a Markov decision process. To address this problem, a Q-learning-based
planning method is proposed. Simulation results show that our model of the time-adaptive
early arrival path problem is well developed, and validate the effectiveness and feasibility of
the proposed Q-learning for the delivery package planning path. The arrival of the drones to
customers is 100% assured at any departure time. Moreover, the Q-Learning method achieved
convergence after only 1000 learning epochs. In addition, experimental results reveal that the
Q Learning approach has a lower early arrival time and power consumption than a random
algorithm. This work allows the computation of the expected arrival path for a single drone.
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