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1 Introduction
The inventory routing problem (IRP) arises when a supplier manages the delivery of com-
modities to its customers on a multiple-day horizon in a centralized manner. It consists in
deciding “who sends what to whom and when” and planning routes to deliver commodities
from depots to customers with the objective of minimizing inventory and routing costs. This
NP-hard problem has received significant attention in the operations research literature over
the past 40 years.

The present paper is motivated by a partnership with Renault, a major European car man-
ufacturer who must routinely solve IRP instances of unprecedented continental scale and com-
plexity as part of their backward logistics. Indeed, they receive car parts from suppliers at
their plants in packaging, and reuse the latter, which implies the need for backward packaging
logistics. The goal of our partnership is to redesign their IRP algorithm. We embed it into a
multi-stage optimization framework. Indeed, only the short-term decisions must be taken on
each day in practice, based on the current information of the future.

This context leads to challenges that can be formalized in a stochastic optimization manner,
as shown by [6]. However, even the deterministic version of the problem is very challenging due
to its combinatorial structure. It prevents the use of stochastic heuristics such as progressive
hedging [8], or Lagrangian relaxation [11], which require to solve many deterministic instances.
We therefore design a rolling horizon policy [9] solving a unique deterministic instance per step,
and leveraging statistical models of predictions. A prerequisite to be able to solve this dynamic
IRP is to address the fixed-horizon deterministic IRP. Numerous variants of the inventory
routing problem have been studied over the past decades. In our specific IRP, several vehicles
can deliver various distinct commodities to clients, starting from several depots. It is thus a
multi-depot, multi-vehicle and multicommodity IRP, close to the multi-attribute formulation
of [5]. In addition, we have the continuous-time structure as detailed by [10]: routes can last
several days, which is implied by the European scale. It induces tight links between routing
and inventory dynamics, and leads to a more challenging problem. Indeed, the optimal order
of a route not only depends on the distances, but also on the delays introduced in the inventory
dynamics of the customers involved. Typical heuristics include route-based matheuristics [3],
decomposition matheuristics [7], and metaheuristics [2]. Algorithms from the literature do not
scale because of 1) the multi-attribute and continuous-time aspects, combined with 2) the scale
of the European instances, with 30 commodities, 16 depots, 600 customers on average and a
21 days horizon.

Our contributions are the following. We design a large neighborhood search (LNS) to solve
the fixed-horizon deterministic multi-attribute continuous-time IRP. To this end, we derive a
new flow relaxation, we generalize dozens of neighborhoods from the routing literature to the
continuous-time IRP, we define two new perturbations based on new MILP formulations, and a



new large neighborhood deriving a localized multi-attribute generalization of a matheuristic [1].
We show we scale to the European instances through extensive numerical experiments. From
this LNS, we define a policy to address the dynamic IRP, leveraging statistical models. This
policy is currently being industrialized at Renault. We implement a simulator to evaluate our
policy in a realistic framework, and to compare it with the current algorithm used in production
at Renault. We highlight the potential gains: thousands of tons of CO2 and millions of euros
per year. Besides, we give access1 to our open-source Julia package that implements the LNS,
together with the library of realistic multi-attribute continuous-time fixed-horizon deterministic
IRP instances.

2 Problem statement
General notations and data. Let M be the set of commodities, D the set of depots and
C the set of customers, that respectively release and demand commodities m ∈ M . The time
horizon is T ∈ Z+ days. At the beginning, each vertex v (depot or customer) has an initial
inventory of commodity m denoted by I0

mv. On each day t ∈ [T ], a customer c demands a
quantity b−

mct of commodity m. A depot d releases a quantity b+
mdt of commodity m.

A maximum inventory capacity κmvt is set on the night of each day t per vertex v and com-
modity m. Below this capacity, no inventory cost is paid. Above, a cost is set to cexc

mv per unit,
where “exc” stands for excess. A price cshort

mc is paid per unit of unsatisfied demand for com-
modity m of customer c, where “short” stands for shortage. It corresponds to a soft constraint
of non-negativity for the customers’ inventories.

We approximate commodities and vehicles by one-dimensional objects. We associate a
length ℓm to each commodity m ∈ M . We consider an infinite fleet of homogeneous vehi-
cles of length L, to deliver the commodities from depots to customers. They are not assigned
to a particular depot. A 1D bin packing problem must therefore be solved for vehicle loading.

The depots and customers are the vertices V = D ∪ C of a directed graph D = (V , A) that
we name the locations graph. The directed aspect is used to model the fact that transport
durations and distances depend on the trip direction. There is an arc a = (u, v) ∈ A for
each vertex u ∈ D ∪ C and v ∈ C, v ̸= u. We associate a distance ∆a (in kilometers) and a
transport duration τa (in hours) to each arc. The distances satisfy the triangular inequality.
When planning a route, a cost is paid per vehicle cveh, per stop (customer visited) cstop, and
per kilometer travelled ckm. The number of stops must not exceed Smax, which is a practical
requirement of the car manufacturer. The limit of driving hours per day is τmax. A route is
then the combination of a feasible path in the locations graph, a date of departure, and the
quantities of each commodity to be delivered to each customer along the path, respecting the
vehicle capacity L.

Dynamic IRP. One difficulty comes from the fact that on day t, we do not know the true
demand and release bt′ of the days t′ ≥ t. We only have access to noisy predictions over H ∈ Z+

days bH
t = (bt′t)t′∈{t,...,min(T,t+H)}, made by Renault, and based on expert knowledge.

b−
mct′︸ ︷︷ ︸

True demand

= b−
mct′t︸ ︷︷ ︸

Prediction

+ ξ−
mct′t︸ ︷︷ ︸

Noise

, b+
mdt′︸ ︷︷ ︸

True release

= b+
mdt′t︸ ︷︷ ︸

Prediction

+ ξ+
mdt′t︸ ︷︷ ︸
Noise

. (1)

On day t, we reveal bt−1, the true demand and release of day t−1, as well as the expert predic-
tions bH

t for the next H days. Other sources of randomness such as transport random delays or
reporting errors are omitted. We model our problem as a multi-stage stochastic optimization
problem. The state Xt on day t contains the routes that start before day t and do not reach
their final stop before t, and the inventory at the depots and customers in the evening of t − 1.
The transition from the state Xt to the next Xt+1 is expressed by a function ft. A policy π

decides the set of routes π(Xt, bH
t ) that start on day t given the state Xt and predictions bH

t .
1https://github.com/LouisBouvier/InventoryRoutingLNS.jl



The cost Ct paid on day t is the sum of the cost of the routes in π(Xt, bH
t ), the excess inventory

cost at the depots and customers for the night of day t, the shortage cost at the customers
for the unsatisfied demand of day t, and the penalization induced by the infeasible decisions
in π(Xt, bH

t ) given bt. The multi-stage stochastic optimization problem we consider can then
be written as:

min
π

Eπ

[ T∑
t=0

Ct

(
Xt, π(Xt, bH

t ), bt

)]
(2a)

subject to X0 = x0 (2b)
Xt+1 = ft(Xt, π(Xt, bH

t ), bt), ∀t ∈ {0, ..., T − 1} (2c)
π(Xt, bH

t ) ∈ Ut(Xt), ∀t ∈ {0, ..., T} (2d)
σ(π(Xt, bH

t )) ⊂ σ(b0, ..., bt−1), ∀t ∈ {0, ..., T}. (2e)

In the formulation above, constraint (2d) defines the set of admissible policies given the state.
They may not be feasible given the true demand and release bt. Constraint (2e) expresses the
fact that the decision on day t is taken knowing the values of demand and release up to t − 1,
denoted by (b0, ..., bt−1).

Simulator. We implement a simulator to be able to evaluate policies for the stochastic IRP.
It includes the dynamic function f , the cost function C and uses historical data to compute
the cost with respect to real scenarios over multiple weeks.

3 Policy

Policy. We derive a heuristic policy to solve the stochastic IRP, detailed in Figure 1 (a). The
principle is the following: on each day t, it defines a deterministic IRP instance with fixed-
horizon H based on the state Xt and predictions bH

t . It uses an autoregressive model trained
on historical data to set the values of demand and release given bH

t . It also introduces an
actualization coefficient γ ∈ (0, 1). The cost of each day t′ ∈ {t, ..., min(T, t + H)} is scaled by
a factor γt′−t. We tune the parameter γ to take future into account without being too sensitive
to the forecast errors. It then solves the IRP instance with our LNS described below, leading to
an IRP solution st = (rt, ..., rmin(T,t+H)). The set of routes rt leaving on day t in st is modified
using a simplified version of the LNS, applying the reload-fixed path vehicles and the routing
local search subroutines. The reason for this last step is that small changes of rt may improve
the policy, but not enough to be applied in the time allocated to the LNS. The set of modified
routes is then taken as policy: π(Xt, bH

t ) = rt.
Although the decisions to be taken on day t only concern the routes leaving on day t, one

key point of this approach is that it leverages the information it has at its disposal about the
future H time steps. It does so by exactly modelling the inventory dynamics, and considering
the potential routes in the near future as alternatives to the short-term decisions. It is one
major distinction with regard to the algorithm currently in production at Renault.

Large neighborhood search. One crucial ingredient for the policy is the algorithm used to
solve the fixed-horizon deterministic problem. As noted above, no approach from the literature
scales as is to our instances. We design an LNS shown in Figure 1 (b) that involves the following
five subroutines. The first one builds an initial solution. 1) The initialization subroutine
solves a flow relaxation – thus a linear program – per commodity and deduces direct routes
by approximately solving bin packing problems to respect vehicle capacity. The other four
subroutines improve or perturb an existing solution, and can be applied any number of times
in any order. 2) The routing local search subroutine takes a random subset of routes and



(a) Policy.

(b) Large neighborhood search.

FIG. 1: Details of the policy and main underlying contributions.

applies a local search with traveling salesman problem (TSP) and split delivery vehicle routing
problem (SDVRP) neighborhoods adapted to the continuous-time IRP. 3) The reload fixed-path
vehicles subroutine solves an MILP per depot to re-optimize the load of the routes starting from
it, possibly cancelling some of them, as done by [1]. 4) The customer reinsertion subroutine
removes a customer from every delivery of a solution and solves an MILP to reinsert it in
the existing routes, also creating new direct routes. 5) The commodity reinsertion subroutine
removes a commodity from every delivery of a solution and solves an MILP to reinsert it.

The main idea behind this LNS is to consider the structure of the IRP, “decompose” it along
its major axes, and solve smaller natural problems to explore the solution space. The crux of
the matter is to find a compromise between the size of the large neighborhoods and the time
required to solve the MILPs behind them. Key contributions in each subroutine are given in
Figure 1 (b). For more details, please consider [4].

4 Numerical experiments

Dynamic IRP. We are first interested in the quality of the policy described in Section 3
when applied to real-world scenarios, and compared with the current algorithm in production.
We focus here on cost and CO2 emissions. Additional indicators such as average vehicle loading
and kilometers travelled are omitted to keep this paper short. With the Renault supply chain
team2, we select a specific period of three consecutive weeks of real activity. We thus have access
to the data and predictions detailed in Section 2 for T = 21 days. Computing an expected cost
requires statistical models both for the predictions and realizations of demand and release,
which is hard to derive a priori. Therefore, using our simulator, we compare policies with
respect to the true historical scenario. The average relative cost reductions are included in
Table 1. They are brief for confidentiality reasons. We show that on average, over the three
weeks of interest, the new policy saves 4.6% of the transport cost. Since this reduction is
induced by the distance travelled, we have a proxy of the transport CO2 emissions reduction.
Besides, we show a significant shortage cost reduction of 57%. The quantity of commodities
in shortage at the customers is divided by three thanks to our policy. This can be understood
because the algorithm in production does not explicitly take future inventory dynamics into
account. Therefore, it can send commodities to customers that do not need them at short term
to fill vehicles, which induces less inventory at the depots for future demand. The estimation

2We especially thank Thaddeus Leonard for his help on industrial data and code.



of total cost saving is 29%, which motivates the current industrialization process, representing
millions of euros and thousands of tons of CO2 per year.

Transport cost reduction Shortage cost reduction Estimated total cost reduction
4.6% 57% 29%

TAB. 1: Estimated average cost reductions induced by our policy compared with the existing
algorithm over three weeks of real data.

Fixed-horizon deterministic IRP. Ablation tests show that each of our subroutines visible
in Figure 1 (b) enables to significantly improve the performance of the LNS. We present a
subset of the results available in [4]. We build 71 preprocessed IRP instances, at the European
scale and over roughly 20 days each, with 30 commodities, 16 depots, and 600 customers on
average. The maximum number of stops is Smax = 3 to comply with the car manufacturer
requirements. Our dataset and code are publicly available3. Algorithms are run with a 90
minutes time limit and same parameters over the 71 instances. Initialization + local search
simply runs the initialization subroutine to build an initial solution, and then applies the
routing local search to improve it. Route-based matheuristic applies iteratively the reload
fixed-path vehicles subroutine after the initialization. The remaining algorithms considered
are the LNS and its ablation versions.

On Figure 2, we plot the cumulative distributions over instances with respect to the gap of
the solutions. Our lower bound is not tight, leading to high gaps by definition. It seems relevant
to use them as a comparison metric, and not as an absolute indicator on a solution quality.
First, the route-based matheuristic (blue curve) performs better than our initialization + local
search algorithm (orange curve), but worse than the LNS, even when one of its components
is removed. Besides, we show that whatever is the component removed from the LNS, the
resulting algorithm with same time budget leads to worse solutions. Indeed, overall, the curve
of the cumulative distribution of our whole LNS (brown) is above any other curve. This is
particularly true when removing the reload fixed-path vehicles neighborhood (purple), but
also for the customer (red) and commodity reinsertion (green) ablations that lead to similar
performance. Both perturbation ablations result in 5% additional average gap compared to
the whole LNS. We expect this trend to be accentuated when the time limit increases, since
looping over neighborhoods and perturbations is key to escape from local minima.
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FIG. 2: Cumulative distributions of the gap among deterministic IRP instances solutions.

3https://github.com/LouisBouvier/InventoryRoutingLNS.jl



5 Conclusion and perspectives
In this short paper, we emphasize a practical use-case: the dynamic IRP behind the packaging
return logistics at Renault. We derive a policy that leverages an LNS designed for the fixed-
horizon deterministic IRP, which is itself a challenge. Through numerical experiments on real
data, we compare our new policy with the existing algorithm at Renault. We show the potential
gains in terms of CO2 emissions, costs, and packaging in shortage. Those gains motivate the
current work done to industrialize our algorithm. We plan to improve the latter with machine
learning techniques in a future work.
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