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1 Introduction 

Recent research has trained a number of disassembly problems, including the disassembly 

sequencing problem [1], the disassembly line balancing problem [2], the disassembly scheduling 

problems [3], the disassembly leveling problems [4], and the disassembly lot-sizing problem [5]. 

Among the various problems related to disassembly systems, our paper focuses on the disassembly lot-

sizing problem which can be defined as “the problem of determining the quantity and timing of End-

Of-Life (EOL) products to be disassembled in order to satisfy the demand of their parts or components 

over a given planning horizon” [6]. Therefore, to optimize the performance indicators, it is necessary 

to decide when and how many EOL products should be disassembled to meet the demand for the 

components [5]. In this research, we study a multi-product disassembly lot-sizing problem under 

stochastic batch demand using a Batch Deterministic and Stochastic Petri Net (BDSPN). The two-level 

product structure is considered. The main goal is to determine the quantity of disassembling products 

so as to satisfy the time-varying demands of components / parts under stochastic and batch demands. 

i.e., which batch customer’s order should be disassembled first for different products. In our study, an 

analytical approach is adopted to analytically evaluate the performance of our system. BDSPNs are 

then applied for modeling and for the performance evaluation of the disassembly process. The main 

contributions related to this work are: 

- A new class of high-level Petri networks, called the BDSPN is adopted to model the lot-sizing 

disassembly problem under a stochastic process.  

- The change of resources (material or human) in the different flows characterizing the processes 

of disassembly process is taken into consideration in our proposed algorithm. 

-  A new mathematical model is put forward which aims to minimize the sum of extra costs due 

to the change of resources (human or material), disassembly operations, and holding costs for 

multi types of products. 

- The potential synergies between PROMETHEE (Preference Ranking Organization Method for 

Enrichment Evaluation) and BDSPNs are investigated in order to aid decision-makers to classify 

optimal disassembly scenarios based on performance indicators. This is the first time that 

PROMETHEE and BDSPNs are used simultaneously. 

- A real case study of the manufacturing company CODIMATRA is studied to improve the 

efficacity of the proposed approach 



 

 

2 BDSPNS FORMALISMS AND PERFORMANCE ANALYSIS 

BDSPN [7] is a nine tuple and it is noted as: N = (P, T, I, 0, V, W, II, D, 𝑢0). There are two types of 

places: discrete places in 𝑝𝑑 and batch places in 𝑝𝑏. Each batch token is represented by a number that 

indicates its size. However, tokens in discrete places are the same as those in standard PNs. There are 

also two types of transitions, 𝑇𝑖 presents an immediate transition, and 𝑇𝑑  denotes the deterministically 

timed transitions, and 𝑇𝑒 represents the stochastic transitions with an exponentially distributed firing 

time. In BDSPN, I ⊆ (P × T) define the input arcs and O ⊆ (T × P) is the output arcs. V⊆ (P × T) 

presents the inhibitor arcs of the transitions and W defines the weights for ordinary arcs and inhibitor 

arcs. I ⊆ Π: T→Z is a priority function assigning a priority to each transition. Timed transitions are 

assumed to have the lowest priority. D: T→ {0}U 𝐼𝑅+ U Exp defines the firing times of all transitions. 

µ0 is the initial µ-marking of the net, where 2IN consists of all subsets of Z. 

The evaluation of this process is based on the temporal evolution of the model μ- marking process [8]. 

An analytical approach based on the graph of μ -markings. This graph is used in conjunction with 

stochastic processes to get benefit from their evaluation methods, including Markov processes. This 

procedure is particularly applicable when there are a finite number of states (μ -marking). The general 

procedure is described by the following steps [8]. 

1- Construct the graph of μ-markings. Batch transitions are marked by their crossing indices (𝑡𝑗 [q]). 

2- Eliminate the unstable states (nodes), and the associated immediate transitions (arcs).  

3- Obtain the stochastic marking process noted by μ (t) from the reduced μ-reachability graph. The  

4- Determine the steady-state distribution of the stochastic process. 

5- Evaluate the performance indexes that characterize the BDSPN modeled process by knowing the 

stationary probability distribution of their states (obtained in Step 4). 

3 A new approach for modeling a disassembly lot-sizing problem 

3.1 Problem statement  

This paper aims to determine which batch demand should be first disassembled for each type of 

product to ensure the quantity of disassembling root items so as to satisfy the time-varying batch 

demands of leaf items over the planning horizon. Some performance indicators based on a reference 

static model are calculated. Then, this paper proposes a new mathematical model that aims to minimize 

the sum of extra cost due to the change of resources (human or material), disassembly operation, and 

holding costs for multi types of products, over all scenarios. A Multi-Criteria Decision Making 

(MCDM) technique is proposed to the disassembly process. The PROMETHEE II method is used for 

prioritizing the suggested scenarios. Two criteria have been considered for this problem: the cost and 

the frequency of each scenario. 

3.2 Mathematical formalization 

The notations are summarized as follows: 

i, q Index for items l (the final components) ∈ (1, 2,…, N) and Batch firing index respectively 

K: Index of operation k = {1, …, K} 

𝐷𝑇𝑏𝑗𝑙  : The disassembly operation cost of leaf item l of product j for batch firing index b 

ℎ𝑞𝑗𝑘: Extra cost to execute operation k of product j for batch firing index q due to the change of 

resource 

𝐻𝑗𝑙𝑏 : Holding cost of leaf items disassembled from root item l of product j for batch firing index b 



 

 

𝑑𝑙𝑗
 , Ф: Demand of leaf item l of product j and different sizes of batch orders 

𝑎𝑙𝑗
 : Number of units of item l obtained by disassembly of one unit of root item j 

𝑞𝑖𝑗: Transition rate from state 𝑚𝑖 to state 𝑚𝑗of incidence matrix Q 

𝐼𝑙𝑡: Inventory level of leaf item l at the end of transition t 

Decision variables 

𝑌𝑞𝑗 : 𝑌𝑞𝑗= 1, if performing operation k after its previous operation k-1, otherwise, 𝑌𝑞𝑗= 0; 

𝑍𝑏𝑗𝑙  : Quantity of leaf item disassembled from root item l of product j for batch firing index b to 

satisfy demand; 

𝐹𝑙𝑡
 : Disposed quantity of leaf item l in period t; 

𝐸𝑏𝑗𝑘: 1 if there is an extra cost to execute operation k of product j for batch firing index b, and 0 

otherwise; 

 

The formulation of the problem is the following: 

[𝑃1]𝑀𝑖𝑛 {(∑  𝐽
𝑗=1 ∑ ∑ 𝐻𝑗𝑞𝑖

 
𝑏𝜖Ф  𝑁

𝑖=1 𝑊(𝑃, 𝑡) 𝑁𝐿(𝑏, 𝑃)𝑚𝑜𝑦 𝑖 +

∑  
𝐽
𝑗=1 ∑ ∑   

𝑏𝜖Ф ∑   
𝐵𝐷𝑆𝑃𝑁𝑠 𝐷𝑇𝑗𝑖 𝑏

𝑁
𝑖=1   𝐶𝑎𝑟𝑑 (𝜇 𝑖(𝑝)) 𝜋𝑖  +   ∑  

𝐽
𝑗=1 ∑ ∑ ∑  𝑏 

𝑏𝜖Ф  𝑀
𝑚=1 ℎ𝑏𝑗𝑘 𝐸𝑏𝑗𝑘  𝜋𝑚

𝐾
𝑘=1 (6) 

Subject to: 

                   𝐼𝑙𝑡= 𝐼𝑙𝑡−1+ ∑  
𝐽
𝑗=1 𝑎𝑙𝑗 

 q. 𝑏 - 𝐹𝑙𝑡
  -𝑑𝑙𝑗

            ∀l = l…N&∀t = 1, 2 … T                                 (7) 

                    ∑   
𝑏𝜖Ф 𝑍𝑗𝑞𝑙  =  𝑑𝑙𝑗

                                     ∀l = l . . . N   &∀j = 1, 2 … J                           (8) 

                      𝑎𝑙𝑗
 . q.𝑏 ≥ ∑ 𝑍𝑗𝑞𝑙

 
𝑏𝜖Ф                                      ∀l = l…N  &    ∀j = 1, 2...J                             (9) 

                     𝑤𝑏𝑗𝑘 = 0 or 1                                             ∀j = 1, 2…J    & k= 1…K                              (10) 

                     𝑍𝑗𝑏𝑙≥ 0                                                ∀l = l…N &      k∈Φ(i) &   l = 1…N                    (11) 

The objective function (6) aims to minimize the sum of extra costs, disassembly operations, and 

holding costs for multi types of products. Constraints (7) define the inventory balance equations for 

the components. Constraints (8) show that the demands of leaf items should be satisfied. Constraints 

(9) express that the total quantity of leaf item l obtained by root item j, after product disassembly, will 

satisfy the demand. Constraints (10-11) represent the domains of decision variables. 

4 Case study 

4.1 BDSPNs of disassembly process 

To test the effectiveness of the investigated approach, the case study of the mechanical company 

CODIMATRA [10] is chosen as an actual case. The studied company attends the return of defective 

machines from customers. After their collection, storage, and evaluation, an expert decides whether to 

sell them to a secondary consumer or to disassemble them. In the latter case, the machines are 

disassembled into pieces. A major part of the reverse logistics process is covered by this company. 

However, in our work, we will focus only on the stages of the disassembly process especially product 

storage and component disassembly and storage. The case of two types of products A and B, with two-

level product will be treated. Each product is composed of 4 components {C1, C2, C3, C4}. The 

disassembly cost of products A and B is respectively 33€ et 35€ and for each component varies between 

5€ and 11€. The inventory cost for final components is constant, which is 20€ for all types of 

components. These costs vary depending on the batch number. However, extra costs due to the change 



 

 

of resources to perform each batch demand varies according to customer orders, disassembly 

operations, and component storage. These extra costs vary from 6€ to 19€ 

 

 Product A Product B 

 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 𝑃10 𝑃11 

b=40, 70 4 2 3 2 1 2 2 3 

Table 1: Nomenclature coefficient 

4.2 BDSPNs of disassembly process 

The batch disassembly process of two types of products in this study is shown in figure 1 and has the 

following characteristics. The arc inhibitor combined to place 𝑝1 and 𝑝3 whose weight corresponds to 

the threshold of disassembly operation. Thus, it controls the inventory level, M(𝑝1 ) and M(𝑝2 ). 

Transitions 𝑡3, 𝑡4 presented the disassembly orders. Discrete places 𝑝1, 𝑝3 used to represent the stock 

of component A and B, respectively; A batch place 𝑝2 used to represent customer orders with different 

sizes. The order size to be processed for the two types of products may be the same or different. It 

follows a random choice policy. That is to say, each batch token validating the transition can cross the 

exit transition with a given probability with the restriction that if two batch tokens have the same size, 

only one of the two will be able to cross the arc. In our example, we have two batch order sizes, 40 and 

70. The batch deposit of the finished component are modeled by places 𝑝4...𝑝11 and  𝑡5 … 𝑡12 represent 

the end of batch disassembly operation and the start of the storage of the batch. The storage of ready 

final components, which were the disassembled products A and B are modeled by the batch places 

𝑝12...𝑝19. Then 𝑡13 and 𝑡14 give the orders to start a new batch order for products A and B. 

4.3 Evolution and resolution of associated stochastic process 

The evolution of the process can be expressed by using the graph of the μ-marking BDSPN model that 

represents this process. Each μ marking of the graph represents the state of the process, and each 

crossing between two μ-markings in the graph represents the execution of an operation that can be the 

start of the disassembly operation for A (crossing 𝑡2), the end of the disassembly operation or the start 

of storing the batch components (crossing 𝑡5). Each batch transition is marked by its corresponding 

batch firing index q.  This graph is built from the initial μ-marking μ0 considering all possible crossings 

of one μ-marking to another. The immediate transitions are more prioritized than timed transitions. 

The resulting graph contains 21 tangible states numbered from 0 to 20. After that, by converting the 

reduced µ-reachability graph to its corresponding stochastic process, we get a Continuous Timed 

Markov Chain (CTMC) that is depicted in figure 2. For this process, we will be limited to the following 

case: 

− 3[40]=1=0.5;3[70]=2=0.7;4[40]=3 = 0.8  and 4[70]=4=0.4 means that the arrival of 

different types of demand orders of the two product follows an exponential law of different 

parameters. 

− 5[160] =5[280] =6[80] =6[140] =7[120] = 7[210] = 8[140]  = 8[80] = 5 =1and 9[80] =  

9[140]=10[120]= 10[210]= 11[80]=  11[140]= 12[80]= 12[140] = 6=0.5 means that the 

storage operation depends on the number of tokens and the type of product. 

− 13[70]= 13[40] = 14[70]=14[40]=7=2 means that the order to start a new batch of the two 

products follows an exponential law of identical parameters. 

We calculate the infinitesimal generator matrix associated with the stochastic μ-marking process : 

π . Q = 0 and ∑ 𝜋𝑖
20
𝑖=0 = 1, where π= [𝜋0, … , 𝜋𝑖, … , 𝜋20] is a row vector corresponding to the probability 

distribution of the states of the stochastic process of the μ-marking, and Q is the transition matrix 



 

 

associated with the Markov chain. The probability distribution of states ∑ 𝜋𝑖
20
𝑖=0  = [0.3125   0.0930   

0.0546   0.125   0.0625   0.0194   0.0194   0.0194   0.0194   0.0194   0.0194   0.0194   0.0195   0.0311   

0.0311   0.0311   0.0311   0.0311   0.0311     0.0311   0.0311]. 

    

Figure 1:  BDSPN model of the proposed process           Figure 2: Associated markov chain 

The arc inhibitor combined to place 𝑝1  and 𝑝3  whose weight corresponds to the threshold of 

disassembly operation. Thus, it controls the inventory level, M(𝑝1 ) and M(𝑝2 ). Transitions 𝑡3, 𝑡4 

presented the disassembly orders. Discrete places 𝑝1, 𝑝3 used to represent the stock of component A  

and B, respectively. A batch place 𝑝2 used to represent customer orders with different sizes. The order 

size to be processed for the two types of products may be the same or different. It follows a random 

choice policy. That is to say, each batch token validating the transition can cross the exit transition with 

a given probability with the restriction that if two batch tokens have the same size, only one of the two 

will be able to cross the arc. In our example, we have two batch order sizes, 40 and 70. The batch 

deposit of the finished component are modeled by places 𝑝4, ..., 𝑝11 and  𝑡5 … 𝑡12 represent the end of 

batch disassembly operation and the start of the storage of the batch. The storage of ready final 

components, which were the disassembled products A and B are modeled by the batch places 𝑝12,..., 

𝑝19. Then 𝑡13 and 𝑡14 give the orders to start a new batch order for products A and B. 

4.4 Selection of optimal scenario using PROMETHEE II 

The batch customer orders are subject to random requests. According to our example and the BDSPN 

marking graph, we have four scenarios. The PROMETHEE II over-classification method is chosen to 

complete the comparative study of the different possible scenarios The results for scenario 1 and 2 are 

respectively 8.099 euro and 7.7867 euro. Scenario 3 equal to 7.3294 euro and scenario 4 equal to 

7.6878euro. The most optimal scenario is scenario 3 which has a positive flow (φ+=1,000), while 

scenario 4 is located second with a positive flow (φ+=0.333). The third and the fourth ranks are for 

scenario 2 (φ−= 0,333) and scenario 1 (φ−=-1,000), respectively. Judging the obtained results, it is 

noted that scenario 4 is the best-ranked alternative. This means that starting by launching a batch order 

of size 70 for product A and size 40 for product B is the most favourable scenario. On the other hand, 

according to the experts' estimates, the worst-ranked alternative is alternative 1 (scenario 1).   

5 Conclusion 

This paper proposes a new approach to solve a disassembly lot-sizing problem under stochastic batch 

demands for multi products with a two-level structure. The BDSPN is used as a modelling tool. It 



 

 

allows describing disassembly activities such as customer order processing, replenishment of stocks, 

disassembly operations, and storage in a batch mode. That, the evolution of the process is expressed 

using the graph of the μ -markings of the BDSPN model, which represents this mechanism. Then, we 

have presented the resolution of the associated stochastic process used to determine the probabilities 

of the various states. The use of these probabilities assesses the average performance of the system. 

Performance indices associated with the BDSPN model have been calculated. An analytic method has 

been presented and applied to our model to analytically evaluate the performance of our approach. 

After that, a new mathematical model has been put forward to minimize the sum of extra costs, 

disassembly operations and holding costs for multi types of products and under different batch 

quantities. The suggested multicriteria assessment PROMETHEE II has enabled decision-makers to 

compare the performance results of various disassembly scenarios to determine the optimal ones. A 

real case study of the manufacturing company CODIMATRA has been adopted to test the effectiveness 

of the proposed approach.  
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