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Participatory budgeting (BP) seeks to invite citizens to participate in the process of deciding

how public money is spent. Porto Alegre, Brazil, in 1989, first employed this form of participa-
tory democracy. Since then, it has been used by different cities worldwide, like Madrid, Seoul,
Bogota, New York, and Paris. For instance, in 2016, Paris applied KP to allow citizens to vote
on allocating a budget of 100 million Euros [2].

Goel et al. [6] introduced a variant of PB. The idea comes from the fact that applying PB is
conceptually similar to solving the classical Knapsack problem, with the set of chosen budget
items fitting a limited budget B while maximizing societal value [3]. In this scheme, each citizen
votes for a subset of the objects such that the sum of the costs of the objects satisfies the budget
constraint. They showed that this schema is strategyproof and welfare-maximizing when the
outcome for the voter is given by the ℓ1 distance from the outcome and its true preference and
partially strategyproof under additive concave utilities. More general mechanisms may not be
strategyproof due to an important impossibility result [7, 5, 8].

We formalize the different notions. An election is a tuple (V , O, W, w, {uv}v∈O), where :
— a set of voters V = [n] (where [i] = {1, . . . , i}, for i ∈ N) and a finite set of m alternatives

(objects) O are considered ;
— W is the available budget (a weight constraint that restricts valid solutions) ;
— Every object o has also a cost denoted w(o) (w : O → R) : each o ∈ O assigns the cost

that needs to be paid if o is selected. For each S ⊆ O, we write w(S) =
∑

o∈S w(o) for
the total cost of S. In our context, each object has the same cost ;

— Each voter v ∈ V has a private preference over all solutions given by a utility function 1

uv : P(O) → R.
A subset of objects S ⊆ O is feasible if w(S) ≤ W . Each voter v votes via a ballot bv : a

ballot is a feasible subset e ∈ P(O). A declaration profile B = (b1, . . . , bn) consists of a ballot
bv for each voter v.

Our goal is to choose a feasible subset of candidates. An aggregation rule Algo, aggregates a
set of individual ballots B into a collective decision and returns a solution, which is a winning
set of objects Algo(B).

Our study focuses on the design of the social choice function that incentives an indivi-
dual voter to vote sincerely. We focus on a social welfare utilitarian function (it maximizes∑

v∈V
∑

o∈s bv(o)).
We denote by b∗

v the ballot of the voter v if she sincerely answers the questions based on her
utility. Given an election, an aggregation rule is strategyproof if : for all profile ballots B, for
all voters v ∈ V , we have uv(Algo(b∗

v; B−v)) ≥ uv(Algo(bv; B−v)).
Our work focuses on a particular voting system using score aggregation rules. Score Voting

can be used to model election systems. The model is similar to Knapsack Voting [6], where
every ballot that contains an object o gives one point to o, and the winner is the object with

1. The set of all subsets of S is denoted by P(S).



the most points. The idea of a score function is to generalize the votes, allowing voters to give
points to any given object.

A score aggregation rule Algo on m objects is defined by a m × m real matrix M and an
associated social choice function Algo. Given an integer W , and a ballot profile B = (b1, . . . , bn),
with b1, . . . , bn seen as a column vector of m elements, Algo taking B as input returns the
winning set of W objects which maximizes the inner product M · e where the ith element of
vector e represents the number of times where oi is in b1, . . . , bn. If such objects are not clearly
defined, we use the strict order given by Algo as a tie-breaker. The voters must vote for W
objects, but they can vote multiple times for the same object.
Example : The city council would like to propose four projects to the residents, such as
“renovating a library” (o1), “creating a bike path” (o2), “funding a soccer team” (o3), or
“funding a basketball team” (o4). However, it can only fund two of the four and wants to
avoid funding two sports-related projects. Thus, it can construct a score function with M =(

3 0 0 0
0 3 0 0
0 0 3 −2
0 0 −2 3

)
. The ballot distribution is the following : four voters want to fund only the

sports projects, two want to fund only the non-sports projects, and two want to fund the
“creating a bike path” and “funding a basketball team”. The following vector is summarized by

V =

(
2
4
4
6

)
. Since

(
3 0 0 0
0 3 0 0
0 0 3 −2
0 0 −2 3

)(
2
4
4
6

)
=

(
6

12
4

10

)
, the winner set is {“creating a bike path”, “funding

a basketball team”} because the scores of these objects are the highest.
We prove that :
— the neutral 2 score aggregate rules are equivalent to knapsack voting on the same instance ;
— any score aggregate rule is strategyproof if and only if its score function satisfies the

Constrained Change Property (CCP) as follows : if a voter v switches from an object α
to an object β in a ballot, the social choice function can either :
— eject α of the output solution and have it replaced by another object ;
— get β to be chosen and eject a previously chosen object (and only one) ;
— does not change the output solution.
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2. Election systems that treat objects equally.


