Compact Modeling in Constraint Programming
with Hybrid Tables

Christophe Lecoutre, Mouny Samy Modeliar, Nicolas Paris, Nicolas Szczepanski
CRIL, University of Artois & CNRS, France
{lecoutre,modeliar,paris,szczepanski}@cril.fr

Mots-clés : Modeling, Table Constraints

Hybrid tables (called ‘smart’ in [6]) are a useful modeling tool for Constraint Programming (CP). Such tables allow us to handle disjunctive cases (constraints) in a compact and structured way. An hybrid table constraint is defined from a table authorizing entries to contain simple arithmetic restrictions (which can be seen as intern constraints). In this paper, we show the practical interest of using hybrid tables on a very simple problem.

Illustration with the 1D Rubik’s Cube. The 1D Rubik’s Cube is a vector composed of 6 numbers, (1 2 3 4 5 6), which can be rotated in 3 different ways in groups of four:

(1 2 3 4) 5 6 --(1)--> (4 3 2 1) 5 6
1 (2 3 4 5) 6 --(2)--> 1 (5 4 3 2) 6
1 2 (3 4 5 6) --(3)--> 1 2 (6 5 4 3)

Given a scrambled vector, the objective is to return the shortest sequence of rotations so as to restore the original ordered vector. Of course, this problem can be generalized with n values. Here, we have n = 6, and the possible rotations are 1, 2, 3, as well as 0 for indicating that no rotation is performed.

When building a CP model, one can introduce a two-dimensional array x of variables indicating what is the status of the vector at each time unit. At x[0], we set the initial scrambled vector, and at x[-1] we set the target ordered vector (-1, as in Python, for designating the last element of the array). We also need a one-dimensional array y of variables for indicating which rotation is applied at each time unit. The declaration of these variables in PyCSP3 [5] is:

```py
# x[t][i] is the value of the ith element of the vector at time t
x = VarArray(size=[nSteps + 1, n], dom=range(1, n + 1))

# y[t] is the rotation chosen at time t (0 for none)
y = VarArray(size=nSteps, dom=range(nRotations))
```

It is possible to avoid some useless sequences of operations : i) if at time t, no operation (0) is performed, then at time t + 1, we can force 0 too ; ii) applying two times in sequence the same operation lets the vector unchanged, which is just a waste of time. Actually, with an hybrid table, we can combine these restrictions, which gives (when focusing on y[0] and y[1] only) in format XCSP3 [1, 2] :

```
<extension type="hybrid-1">
  <list> y[0] y[1] </list>
  <supports> (0,0) (1,≠1) (2,≠2) (3,≠3) </supports>
</extension>
```
To ensure that we pass from a state to another one that is valid (i.e., can be reached), we can use an hybrid table involving some binary restrictions. For example, if \(y[0] \) is set to 0, then we want \(x[0][0] = x[1][0] \), \(x[0][1] = x[1][1] \), \ldots By introducing (in XCSP\(^3\)) an expression of the form ‘ci’ in the \(j \)th element of a tuple, we indicate that we want the variable in the column of index \(i \) being equal to the \(j \)th variable. We can then combine all possible transition cases with a single table. This table is given here in the context of the transition between time 0 and time 1 (note how rotations are managed by the choice of indexes after the symbol ‘c’) :

\[
\begin{align*}
\text{<extension type="hybrid-2">} \\
\text{<list>} \ y[0] \ x[0] \ x[1] \text{ </list>} \\
\text{<supports>} \\
(0,*,*,*,*,*,c1,c2,c3,c4,c5,c6) \\
(1,*,*,*,*,*,c4,c3,c2,c1,c5,c6) \\
(2,*,*,*,*,*,c1,c5,c4,c3,c2,c6) \\
(3,*,*,*,*,*,c1,c2,c6,c5,c4,c3) \\
\text{</supports>} \\
\text{</extension>}
\]

Hence, a PyCSP\(^3\) model for the 1D Rubik’s Cube can be mainly composed of hybrid table constraints : one group of hybrid tables with unary restrictions of the form ‘\(\neq i \)’ (hybridization level 1) and one group of hybrid tables with binary restrictions of the form ‘\(=ci \)’, abbreviated as ‘ci’ (hybridization level 2). Solving with our constraint solver ACE [4] the most difficult instance \((12, 2, 7, 3, 4, 11, 1, 10, 8, 9, 6, 5)\), mentioned by H. Kjellerstrand on his page www.hakank.org/common_cp_models, gives the following result. The hybrid model instance involves 57 constraints (29 hybrid table constraints, 24 unary constraints, and 4 side constraints) and can be solved in 20 seconds. The instance built by means of classical intensional constraints involves 2,239 constraints (most of them being reified constraints due to complex expressions) and cannot be solved within 1 hour.

It is important to note that modeling with hybrid tables can be applied to various contexts, and notably when one has to simulate a planning process. For example, for the classical board of the English peg solitaire [3], we have written an efficient model composed of only 31 hybrid table constraints (because a sequence of 31 operations has to be executed).

Useful links :
— PyCSP\(^3\) website : pycsp.org
— ACE Github : https://github.com/xcsp3team/ace
— XCSP\(^3\) website : xcsp.org

Références