
Compact Modeling in Constraint Programming
with Hybrid Tables

Christophe Lecoutre, Mouny Samy Modeliar, Nicolas Paris, Nicolas Szczepanski
CRIL, University of Artois & CNRS, France

{lecoutre,modeliar,paris,szczepanski}@cril.fr

Mots-clés : Modeling, Table Constraints

Hybrid tables (called ’smart’ in [6]) are a useful modeling tool for Constraint Programming
(CP). Such tables allow us to handle disjunctive cases (constraints) in a compact and structured
way. An hybrid table constraint is defined from a table authorizing entries to contain simple
arithmetic restrictions (which can be seen as intern constraints). In this paper, we show the
practical interest of using hybrid tables on a very simple problem.

Illustration with the 1D Rubik’s Cube. The 1D Rubik’s Cube is a vector composed of
6 numbers, (1 2 3 4 5 6), which can be rotated in 3 different ways in groups of four :

(1 2 3 4) 5 6 --(1)-> (4 3 2 1) 5 6
1 (2 3 4 5) 6 --(2)-> 1 (5 4 3 2) 6
1 2 (3 4 5 6) --(3)-> 1 2 (6 5 4 3)

Given a scrambled vector, the objective is to return the shortest sequence of rotations so as
to restore the original ordered vector. Of course, this problem can be generalized with n values.
Here, we have n = 6, and the possible rotations are 1, 2, 3, as well as 0 for indicating that no
rotation is performed.

When building a CP model, one can introduce a two-dimensional array x of variables indi-
cating what is the status of the vector at each time unit. At x[0], we set the initial scrambled
vector, and at x[−1] we set the target ordered vector (−1, as in Python, for designating the
last element of the array). We also need a one-dimensional array y of variables for indicating
which rotation is applied at each time unit. The declaration of these variables in PyCSP3 [5]
is :

x[t][i] is the value of the ith element of the vector at time t
x = VarArray (size =[nSteps + 1, n], dom=range (1, n + 1))

y[t] is the rotation chosen at time t (0 for none)
y = VarArray (size=nSteps , dom=range(nRotations))

It is possible to avoid some useless sequences of operations : i) if at time t, no operation
(0) is performed, then at time t + 1, we can force 0 too ; ii) applying two times in sequence
the same operation lets the vector unchanged, which is just a waste of time. Actually, with an
hybrid table, we can combine these restrictions, which gives (when focusing on y[0] and y[1]
only) in format XCSP3 [1, 2] :

<extension type="hybrid -1">
<list > y[0] y[1] </list >
<supports > (0 ,0)(1, 6=1)(2, 6=2)(3, 6=3) </supports >

</extension >

To ensure that we pass from a state to another one that is valid (i.e., can be reached), we
can use an hybrid table involving some binary restrictions. For example, if y[0] is set to 0, then
we want x[0][0] = x[1][0], x[0][1] = x[1][1], . . . By introducing (in XCSP3) an expression of the
form ’ci’ in the jth element of a tuple, we indicate that we want the variable in the column of
index i being equal to the jth variable. We can then combine all possible transition cases with
a single table. This table is given here in the context of the transition between time 0 and time
1 (note how rotations are managed by the choice of indexes after the symbol ’c’) :

<extension type="hybrid -2">
<list > y[0] x[0] x[1] </list >
<supports >

(0,*,*,*,*,*,*,c1 ,c2 ,c3 ,c4 ,c5 ,c6)
(1,*,*,*,*,*,*,c4 ,c3 ,c2 ,c1 ,c5 ,c6)
(2,*,*,*,*,*,*,c1 ,c5 ,c4 ,c3 ,c2 ,c6)
(3,*,*,*,*,*,*,c1 ,c2 ,c6 ,c5 ,c4 ,c3)

</supports >
</extension >

Hence, a PyCSP3 model for the 1D Rubik’s Cube can be mainly composed of hybrid table
constraints : one group of hybrid tables with unary restrictions of the form ’ 6= i’ (hybridi-
zation level 1) and one group of hybrid tables with binary restrictions of the form ’=ci’,
abbreviated as ’ci’ (hybridization level 2). Solving with our constraint solver ACE [4] the most
difficult instance (12, 2, 7, 3, 4, 11, 1, 10, 8, 9, 6, 5), mentioned by H. Kjellerstrand on his
page www.hakank.org/common_cp_models, gives the following result. The hybrid model ins-
tance involves 57 constraints (29 hybrid table constraints, 24 unary constraints, and 4 side
constraints) and can be solved in 20 seconds. The instance built by means of classical inten-
sional constraints involves 2 239 constraints (most of them being reified constraints due to
complex expressions) and cannot be solved within 1 hour.

It is important to note that modeling with hybrid tables can be applied to various contexts,
and notably when one has to simulate a planning process. For example, for the classical board
of the English peg solitaire [3], we have written an efficient model composed of only 31 hybrid
table constraints (because a sequence of 31 operations has to be executed).

Useful links :
— PyCSP3 website : pycsp.org
— ACE Github : https://github.com/xcsp3team/ace
— XCSP3 website : xcsp.org

Références
[1] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3 : an integrated format

for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016.
[2] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3-core : A format for

representing constraint satisfaction/optimization problems. CoRR, abs/2009.00514, 2020.
[3] C. Jefferson, A. Miguel, I. Miguel, and A. Tarim. Modelling and solving english peg solitaire.

Computers & Operations Research, 33(10) :2935–2959, 2006.
[4] C. Lecoutre. ACE, a generic constraint solver. To Appear, 2022.
[5] C. Lecoutre and N. Szczepanski. PyCSP3 : modeling combinatorial constrained problems

in Python. CoRR, abs/2009.00326, 2020.
[6] J.-B. Mairy, Y. Deville, and C. Lecoutre. The smart table constraint. In Proceedings of

CPAIOR’15, pages 271–287, 2015.

http://www.hakank.org/common_cp_models/
https://www.pycsp.org
https://github.com/xcsp3team/ace
https://www.xcsp.org

