The d-interaction index in MCDA

Brice Mayag¹ and Bertrand Tchantcho²

 ¹ University Paris-Dauphine, PSL Research university, LAMSADE, CNRS, UMR 7243 Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16 France brice.mayag@dauphine.fr
 ² Ecole Normale Supérieure de Yaoundé, MASS Laboratory, BP 47 Yaoundé, Cameroon btchantcho@yahoo.fr

Abstract. In the context of preference modeling, in MCDA, we introduce a new interaction index based on a distance, in order to better model the interactions among criteria.

Keywords: MCDA, independence, interaction, Choquet integral, Kendall distance

1 Introduction

Multiple Criteria Decision Analysis (MCDA) aims at representing numerically the preferences of a Decision Maker (DM), by using an appropriate aggregation function. The additive model is usually used when the DM preferences satisfy the independence axiom. If not, the Choquet integral [1,3] model can be used, allowing to capture interactions among criteria. However, given a preference information of the DM, the sign of the interaction, of a subset of criteria, is not always stable [2]. This leads to some misinterpretations of this notion. We introduce a new interaction index, named the *d*-interaction, directly linked to the preferences and the independence axiom, which is null if and only if there is no interaction among criteria.

2 Settings

Let $X = X_1 \times X_2 \times \ldots \times X_n$ be a set of alternatives evaluated on a finite set of $n \ge 3$ criteria, $N = \{1, 2, \ldots, n\}$ $(n \ge 3)$, where X_i refers to the discrete set of attribute $i, i = 1, \ldots, n$. A marginal utility function $u_i : X_i \to \mathbb{R}_+$, is associated to each attribute X_i . Given any $T \subset N$, we set $X_T = \prod_{i \in T} X_i$ and $z = (x_S, y_{N \setminus S})$ means that $z_i = x_i$ if $i \in S$ and $z_i = y_i$ otherwise.

Definition 1 (Independence Axiom)

1. S is preference independent of $N \setminus S$, w.r.t. \succeq_X , if for all $x_S, x'_S \in X_S$, $a_{N \setminus S}, b_{N \setminus S} \in X_{N \setminus S}$,

$$(x_S, a_{N\setminus S}) \succeq_X (x'_S, a_{N\setminus S}) \Rightarrow (x_S, b_{N\setminus S}) \succeq_X (x'_S, b_{N\setminus S})$$
(1)

2. The preference relation \succeq_X is said to satisfy the independence axiom if for every subset $S \subseteq N$, S is preference independent of $N \setminus S$.

Definition 2 Given an alternative $x := (x_1, ..., x_n)$ of X, the expression of the Choquet integral of x, w.r.t. a 2-additive capacity, is given by

$$C_{\mu}(u_1(x_1),\ldots,u_n(x_n)) = \sum_{i=1}^n \phi_i^{\mu} u_i(x_i) - \frac{1}{2} \sum_{\{i,j\} \subseteq N} I_{ij}^{\mu} |u_i(x_i) - u_j(x_j)|$$

where $I_{ij}^{\mu} = \mu(\{i, j\}) - \mu(\{i\}) - (\{j\})$ is the interaction index between *i* and *j* and ϕ_i^{μ} is the Shapley value of *i*.

Example 1 Let us assume that the scale [0, 20] of the evaluation of four students, corresponds to the utility function associated to each subject, i.e.,

2 Brice Mayag and Bertrand Tchantcho

1: Mathematics (M)	2: Statistics (S)	3: Language (L)
$u_1(16) = 16$	$u_2(13) = 13$	$u_3(7) = 7$
$u_1(16) = 16$	$u_2(11) = 11$	$u_3(9) = 16$
$u_1(6) = 6$	$u_2(13) = 13$	$u_3(7) = 7$
$u_1(6) = 6$	$u_2(11) = 11$	$u_3(9) = 16$

It is not difficult to see that the preference information $a \succ_X b \succ_X c \succ_X d$ is representable by an additive model, but also by a 2-additive Choquet integral model in which all the interactions indices are not null (see Table 1).

$ \frac{\mu(\{1\})}{\mu(\{2\})} \\ \mu(\{3\}) \\ \mu(\{1,2\}) \\ \mu(\{1,3\}) \\ \mu(\{1,3\}) $	$\begin{array}{c} 0.1 \\ 0.5 \\ 0.5 \\ 0.9 \\ 0.7 \\ 0.7 \end{array}$	$\begin{array}{ccc} I^{\mu}_{12} & 0.3 \\ I^{\mu}_{13} & 0.1 \\ I^{\mu}_{23} & -0.5 \end{array}$	$\begin{array}{ccc} \phi_1^{\mu} & 0.3 \\ \phi_2^{\mu} & 0.4 \\ \phi_3^{\mu} & 0.3 \end{array}$	$ \begin{array}{cccc} C_{\mu}(a) & 12.7 \\ C_{\mu}(b) & 11.3 \\ C_{\mu}(c) & 9.5 \\ C_{\mu}(d) & 8.5 \end{array} $
$\mu(\{2,3\})$	0.5			

Table 1. $a \succ_X \overline{b} \xrightarrow{f} c \succ_X d$ are representable by a 2-additive Choquet integral C_{μ} .

A misinterpretation of the interaction index might led to believe that in a Choquet model, independence is equivalent to having null interactions. However, as shown in the previous example, preferences may verify the independence axiom but been representable by a Choquet model with interactions different from zero. This finding motivates the introduction of a new concept of interaction for which nullity coincides with independence.

3 A new interaction index

Definition 3 Let d be a distance defined on the set of all binary relations and S be a subset of N. The d-interaction index between criteria is defined by :

$$I^{d}(S) = \sum_{\{y_{N\setminus S}, z_{N\setminus S}\}\subseteq X_{N\setminus S}} d(\succeq_{S}^{y_{N\setminus S}}, \succeq_{S}^{z_{N\setminus S}})$$

The *d*-interaction index of a coalition S of criteria captures through the distance the effect of $N \setminus S$ over S.

Theorem 1. A preference relation \succeq_X satisfies the independence axiom if and only if $I^d(S) = 0$ for all $S \in 2^N$.

Theorem 2. Let \succeq be a preference relation and d a distance over binary relations. A necessary and sufficient condition under which $I^d(S) = 0$ for all $S \in 2^N$, is that, for all $i \in N$, $I^d(N \setminus i) = 0$

Given two binary relations R_1 and R_2 , the Kendall distance between R_1 and R_2 , denoted by $D_K(R_1, R_2)$ is defined by : $D_K(R_1, R_2) = |R_1 \setminus R_2| + |R_2 \setminus R_1|$. In the above example, it is not difficult to see that the preferences $b \succ_X a$ and $c \succ_X d$ are not representable by an additive model. Therefore, we have $I^d(23) > 0$ since $\gtrsim_{23}^{a_1} \neq \gtrsim_{23}^{a_2}$, i.e., these preferences do not satisfy the independence axiom.

References

- 1. M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92:167–189, 1997.
- 2. Paul Alain Kaldjob Kaldjob, Brice Mayag, and Denis Bouyssou. On the interpretation of the interaction index between criteria in a Choquet integral model. *Fuzzy Sets and Systems*, 2022.
- 3. B. Mayag, M. Grabisch, and C. Labreuche. A representation of preferences by the Choquet integral with respect to a 2-additive capacity. *Theory and Decision*, 71(3):297–324, 2011.