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1 Introduction
Research in combinatorial optimization has provided efficient algorithms to solve many

complex discrete decision problems, providing exact or near-optimal solutions in reasonable
amounts of time. The applications are countless, ranging from logistics (network design, faci-
lity location, . . .) to scheduling. In this paper, we are interested in the class S of deterministic
combinatorial optimization problems that amount to selecting a feasible set of edges in a given
graph G = (V,E) and that minimizes the sum of edge-weights. Any Π ∈ S represents a specific
problem, such as the shortest path or the minimum spanning tree problem. We consider further
that G is a spatial graph embedded into a given metric space (M, d). Each vertex i is assigned
a position ui ∈M so the weight of each edge {i, j} is given by its distance d(ui, uj). Denoting
by X ⊆ {0, 1}|E| the set of feasible vectors for a given instance, any Π ∈ S corresponds to a
combinatorial optimization problem of the form

min
x∈X

∑
{i,j}∈E

xijd(ui, uj). (Π)

Problem Π encompasses many applications, such as network design and facility location.
These are typically subject to data uncertainty, be it because of the duration of the decision
process, measurement errors, or simply lack of information. One successful framework that
has emerged to address uncertainty is robust optimization [2], where the uncertain parameters
are modeled with convex sets such as polytopes, or with finite sets of points. Many authors
have focused more particularly on robust discrete optimization problems, see [4, 5] and the
references therein.

We enter this framework by considering the model where the positions of the vertices are
subject to uncertainty, therefore impacting the distances among the vertices. The resulting
problem thus seeks to find a feasible set of edges that minimizes its worst-case sum of distances.
Formally, we introduce for each vertex i ∈ V the set of possible locations as the uncertainty
set Ui ⊆ M of cardinality σi = |Ui|. We consider that there is no correlation between the
positions of the different vertices, so a scenario is given by the tuple u = (u1, . . . , u|V|) which
belongs to the set U = ×i∈VUi. Then, given Π ∈ S, we study in this paper the locational robust
counterpart of problem Π, formally defined as

min
x∈X

max
u∈U

∑
{i,j}∈E

xijd(ui, uj). (LocRob-Π)

We also devote a particular attention to evaluating the objective function of LocRob-Π, often
called the adversarial problem

max
u∈U

∑
{i,j}∈E

xijd(ui, uj). (adversarial)

We underline that we focus throughout on finite uncertainty sets. However, our setting encom-
passes polyhedral uncertainty sets whenever the distance function is convex.



2 Contributions
Let us denote by G(x) = (V (x), E(x)) the subgraph induced by x, where

E(x) = {{i, j} ∈ E | xij = 1}

and
V (x) = {i ∈ V | ∃e ∈ E(x) : i ∈ e} .

In this context, we can summarize our contributions as follows (see [3] for details) :
— We prove that LocRob-Π is NP-hard even when X consists of all s − t paths and

(M, d) is the one-dimensional Euclidean metric space or when X consists of all spanning
trees of G. These results illustrate how the nature of LocRob-Π fundamentally differs
from the classical min-max robust problem with cost uncertainty, which is known to be
polynomially solvable whenever the costs lie in independent uncertainty sets [1].

— We provide a general cutting-plane algorithm for LocRob-Π. We further show that pro-
blem adversarial isNP-hard and provide two algorithms for computing adversarial.
One is based on integer programming formulations while the other one relies on a dynamic
programming algorithm that involves the threewidth of G(x).

— We leverage the above dynamic programming to provide a compact formulation for the
problem when any G(x) contains only stars (or unions of stars). We can, in theory, extend
that idea to trees, albeit presenting poor numerical performance.

— We propose a conservative approximation of the problem that uncouples U into its pro-
jections Ui, i ∈ V. In the case of Euclidean metric spaces, this approximation leads to
mixed-integer second-order conic reformulations, and turns out to be equivalent to the
affine decision rule reformulation proposed by [6].

— We compare the exact cutting plane algorithm numerically with the above conservative
approximation and simple deterministic reformulations. The benchmark is composed of
two families of instances. The first family includes Steiner tree instances that illustrate
subway network design. The second one is composed of strategic facility location ins-
tances.
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