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1 Introduction
The vehicle routing problem with time windows (VRPTW) is a relevant variant of the classic
vehicle routing problem due to its numerous applications that emerge from real-life logistics
necessities. Therefore, this problem has received substantial attention in the literature (see the
survey [2]). The solution of VRPTW minimizes the overall operational costs in routes to serve
visit points while respecting capacity constraints and intervals of service time (time windows).

In the deterministic version of VRPTW, all the input data are static and known in advance.
However, in practice, the travel time may vary because of different sources of uncertainty. For
example, accidents, traffic jams, or working roads usually add time delays. Hence, the models
for the deterministic VRPTW may not be ideal in these cases. The literature on the VRPTW
with uncertain travel times typically relies on two frameworks: stochastic programming and
robust optimization. This work focuses on robust optimization, which often leads to a more
tractable model than stochastic optimization, particularly for routing problems (e.g., [1, 3]).

2 The robust VRPTW model
In order to handle the uncertainty, our Robust VRPTW (RVRPTW) model considers that
the travel times belong to a known finite set. The RVRPTW is defined on a directed graph
G = (V, A), where V = V ∗ ∪ {o, d}, V ∗ is the set of clients to be visited, o is the origin depot,
and d is the destination depot. Each vertex i ∈ V is associated with a demand qi and with
a time window [ei, li]. Set A contains arcs between pairs of vertices (i, j), and each arc has a
travel cost cij and a travel time tij . In addition, let K represent the set of vehicles, where each
vehicle k ∈ K has a capacity C.

Next, we introduce two important sets. Let X ⊆ {0, 1}|A|×|K| be the set of feasible paths
starting at o and ending at d, and T Γ ⊆ R|A| be the uncertainty set. Moreover, let t̄ij and t̂ij

denote the nominal travel time and the deviation for arc (i, j) ∈ A. Further, let Γ ∈ Z denote
the maximum number of components of t equal to the deviated value t̄ij + t̂ij for any travel
time vector t ∈ T Γ. Formally, set T Γ is defined as follows:

T Γ =

t ∈ R|A| : tij = t̄ij + δij t̂ij , (i, j) ∈ A,
∑

(i,j)∈A

δij ≤ Γ, δij ∈ {0, 1}, ∀(i, j) ∈ A

 ,

where δij indicates whether arc (i, j) is deviated in the associated vector t.



Let xk
ij be the binary variable that assumes 1 iff the vehicle k ∈ K traverses the arc (i, j) ∈ A,

and let yi(t) be a positive real variable indicating the arrival time at vertex i for a given
uncertainty travel time parameter t ∈ T Γ. Then, we can describe the RVRPTW as follows.

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij

s.t. (xk
ij = 1) =⇒ (yj(t) ≥ yi(t) + tij), (i, j) ∈ A, k ∈ K, ∀t ∈ T Γ∑

k∈K

∑
(i,j)∈A

xk
ij = 1, ∀i ∈ V ∗

ei ≤ yi(t) ≤ li, i ∈ V, ∀t ∈ T Γ

x ∈ X, y ∈ R+

The formulation above typically leads to time-consuming algorithms by mathematical pro-
gramming approaches (e.g., [1]). Hence, we will address it using Local Search (LS) algorithms.

3 Local search
A LS algorithm attempts to find improvements by locally modifying the current solution x ∈ X
so as to generate neighbor solutions in the search space. Moreover, an evaluation function
measures the difference between solutions, guiding these modifications. Due to the numerous
comparisons between solutions during the LS phase, efficient evaluations are crucial.

The Dynamic Programming (DP) approach presented in [1] checks the feasibility of robust
time windows for a given x ∈ X in polynomial time. However, in contrast to directly inserting
this checker in the LS leading to a binary decision (feasible or infeasible solution), several
methods consider penalizing infeasible solutions aiming to provide the distance among distinct
solutions, some of them using the time-warp concept [4] to this end in the VRPTW.

In the context of RVRPTW, the adversary problem seeks to maximize penalization among
all t ∈ T Γ leading to solving a maximization problem for the adversary. We conjecture that
the problem of computing the maximum time-warp is N P-Hard. Therefore, we propose the
concept of number of failures in a route. Let ϕj(t, x) assumes 1 iff yi(t) + tij > lj for a
vertex j ∈ x, and a time t ∈ T Γ, and 0 otherwise. Also, let ϕ(x) be the total of failures of a
route x given by ϕ(x) = maxt∈T Γ

∑
j∈x ϕj(t, x). As opposed to the concept of time-warp, the

approach based on the number of failures leads to a polynomial time DP. We, therefore, intend
to implement the proposed algorithm within an iterated local search framework and evaluate
its performance against other methods on the benchmark instances.
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