Nested interval branch-and-bound algorithm for min-max problem

Daniel IOAN ${ }^{1}$, Jordan NININ ${ }^{1}$, Benoit CLÉMENT ${ }^{1}$
ENSTA-Bretagne, LAB-STICC, Brest, France
\{daniel.ioan, jordan.ninin, benoit.clement\}@ensta-bretagne.fr

Keywords : min-max optimization, interval analysis, global optimization, branch-and-bound algorithm

1 Introduction

Many engineering problems (e.g., structured robust control [1, 2] or optimal control [3]) reduce to optimization programs for which global resolution is desired or required. In this kind of realistic problems, the parametric uncertainties and the non-convexity are not only some artifacts but rather built-in features that cannot be eluded. Therefore, the resulting min-max problem (1) has to be solved efficiently and accurately. The output of the algorithm consists of (a) a reliable solution w.r.t. the numerical criteria and (b) an enclosure of the global minimum with a user-defined precision.

$$
\begin{equation*}
\left\{\min _{x \in \mathbb{X}} \sup _{y \in \mathbb{Y}} f(x, y)\right. \tag{1}
\end{equation*}
$$

To this end, the interval analysis $[4,5]$ has proved to be an elegant and adequate tool in conjunction with the branch-and-bound approach $[6,7]$. However, aspects regarding the convergence and performance of the algorithms are prone to be refined by employing several techniques such as linear relaxation, constraint propagation, or warm start.

2 Implementation aspects

The proposed method resides in nesting an interval branch-and-bound algorithm inside another one. More precisely, at each iteration of the main minimization algorithm, a secondary maximization one is engaged to provide an enclosure on $f_{\text {sup }}(x)=\sup _{y \in \mathbb{Y}} f(x, y), \forall x \in \mathbb{X}_{\text {current }}$.
Since complexity plays a significant role in our approach, taking into account the field of application, some refinement techniques need to be considered in order to improve the convergence of the second interval branch-and-bound algorithm. Hence, besides the classical acceleration techniques based on linear relaxation, constraint programming, or warm start, we propose a restriction of the searching domain \mathbb{Y} (in the secondary algorithm) by eliminating the redundant/irrelevant information, concentrating only on some key points and that without losing the global optimum. Our technique relies on a monotonicity test and KKT (Karush-Kuhn-Tucker) conditions; both applied on an entire sub-domain (\mathbf{x}, \mathbf{y}) using interval arithmetic. The idea is briefly presented in Algorithm 1, where the secondary maximization interval branch-and-bound algorithm is detailed.
Consequently, we minimize memory consumption, avoiding a quick saturation of the available memory. Several strategies are discussed in order to efficiently obtain this restriction from a numerical perspective.
As stated above, the algorithm uses interval analysis and set-theory methods. Thus, for the practical implementation, the IBEX library [8] is employed, and some proof of concept illustrations are provided.

```
Algorithm 1 Secondary interval branch-and-bound with monotonicity test
Input: \(\mathcal{L}_{\mathbf{x}} \quad \triangleright\) it contains all boxes \(\mathbf{y}\) associated with \(\mathbf{x}\)
Output: [1b, ub] \(\triangleright\) an enclosure on \(f_{\text {sup }}(\mathbf{x})\)
    while \(\operatorname{width}([\mathrm{lb}, \mathrm{ub}]) \leq \epsilon\) do \(\quad \triangleright\) Stop criterion
        Extract \(\mathbf{y}\) from \(\mathcal{L}_{\mathbf{x}}\).
        Compute bounds on \(f(\mathbf{x},\).\() over \mathbf{y} \quad \triangleright\) via interval analysis.
        Search a good solution \(\tilde{y}\). \(\quad \triangleright\) with a local solver.
        Update \(\mathrm{lb}=f(\mathbf{x}, \tilde{y})\).
        Bisect \(\mathbf{y}\) into \(\mathbf{y}_{1}\) and \(\mathbf{y}_{2}\),
        for \(\mathrm{y} \in\left\{\mathbf{y}_{1}, \mathbf{y}_{2}\right\}\) do \(\quad \triangleright\) Monotonicity test for \(\mathbf{y}_{1}\) and \(\mathbf{y}_{2}\)
            Compute \(\mathbf{J}\) for \(\mathbf{x}\) and \(\mathbf{y} \quad \triangleright \mathbf{J}\) - an enclosure box of the gradient \(\nabla f\)
            For each component \(\mathbf{y}_{i}\) of \(\mathbf{y}: ~ \triangleright\) w.r.t. monotonicity given by each component of \(\mathbf{J}\)
                \(\tilde{\mathrm{y}}_{i}= \begin{cases}\overline{\mathrm{y}}_{i} & \text { if } \overline{\mathbf{J}}_{i} \leq 0, \\ \underline{\mathrm{y}}_{i} & \text { if } \underline{\mathbf{J}}_{i} \geq 0, \\ \mathrm{y}^{\mathrm{y}} & \text { else. }\end{cases}\)
            Insert \(\tilde{y}\) in \(\mathcal{L}_{\mathbf{x}}\).
        end for
        Update ub \(=\max _{\mathbf{y} \in \mathcal{L}_{\mathbf{x}}} \overline{f(\mathbf{x}, \mathbf{y})}\)
    end while \(\quad \triangleright\) Remark: an interval \(\mathbf{y}=[\underline{y}, \bar{y}]\)
```


References

[1] Dominique Monnet. "Global minmax optimization for robust H_{∞} control". PhD thesis. École nationale supérieure de techniques avancées Bretagne, 2018.
[2] Luc Jaulin and Éric Walter. "Guaranteed tuning, with application to robust control and motion planning". In: Automatica 32.8 (1996), pp. 1217-1221.
[3] Ion Necoara et al. "Finite-horizon min-max control of max-plus-linear systems". In: IEEE Transactions on Automatic Control 52.6 (2007), pp. 1088-1093.
[4] Ramon E Moore. Interval analysis. Prince-Hall, Englewood Cliffs, NJ, 1966.
[5] Luc Jaulin et al. Applied Interval Analysis. Springer London, 2001.
[6] Jordan Ninin. "Optimisation globale basée sur l'analyse d'intervalles: relaxation affine et limitation de la mémoire". PhD thesis. Institut National Polytechnique de Toulouse, 2010.
[7] Emilio Carrizosa and Frédéric Messine. "An interval branch and bound method for global Robust optimization". In: Journal of Global Optimization 80.3 (2021), pp. 507-522.
[8] Gilles Chabert et al. Ibex, an interval-based explorer. 2007.

