
OR-Tools’ Vehicle Routing Solver: a Generic Constraint-

Programming Solver with Heuristic Search for Routing Problems

Thibaut Cuvelier, Frederic Didier, Vincent Furnon, Steven Gay, Sarah Mohajeri, Laurent Perron
Google Paris, France

{tcuvelier,fdid,vfurnon,stevengay,mohajeri,lperron}@google.com

Keywords: vehicle-routing problems, constraint programming, heuristics, metaheuristics.

1 Introduction

OR-Tools [1] is the general-purpose optimisation toolbox open-sourced by Google in 20151, being
in development since 2008. This toolkit provides a uniform interface to several solvers, both first- and
third-party. In particular, it offers a high-level interface for vehicle-routing problems (VRPs). OR-
Tools contains several solvers, in particular two CP solvers, CP* (since the first open-source release)
and CP-SAT (gold-medal winner at several MiniZinc competitions [2], developed since 2009), , but
also two linear solvers: the simplex-based Glop (since 20142), and PDLP [3], a first-order large-scale
linear solver. OR-Tools is being actively developed, with approximately quarterly releases. Outside
Google, the solver suite is easily accessible via Google Cloud, either for solving VRPs3 or mixed-
integer linear programs, although the latter API is not yet in general access4.

The routing component has historically played a strong role in the development of the overall
solver; its major focus is on solving large-scale industrial vehicle-routing problems with complex
constraints: vehicle capacities with various starting/ending depots, client time windows considering
road traffic and driver breaks, pick-up-and-delivery precedence rules, incompatible shipments within
the same vehicle, solution similarity to a previous call to the solver, etc. To this end, a high-level
modelling API is proposed to the users in Python, C++, Java, and C#, using only routing concepts,
even though the user has access to the underlying constraint-programming model.

From an algorithmic point of view, the routing solver is organised in three parts: (i) first-solution
heuristics generate good potential vehicle tours; (ii) local search improves the first solutions, with
metaheuristics to guide the search; (iii) a CP engine proves the optimality of the best solution or
improves upon it. The main difference with many academic solvers is the focus on generality in the
solver, including its heuristics.

1https://groups.google.com/g/or-tools-discuss/c/OMDgOZE7z 4/m/hkwZaKTRla4J

2https://ai.googleblog.com/2014/09/sudoku-linear-optimization-and-ten-cent.html

3https://cloud.google.com/optimization/docs/overview

4https://aihub.cloud.google.com/u/0/p/products%2F03a54ca4-f9ba-489b-bbb3-b6ca8c22c5cf

2 Modelling vehicle-routing problems

VRP-like models can be directly entered using the routing modelling API, a high-level interface
dedicated to this family of problems. The solver ingests the distance-weighted directed graph through
a callback function (RoutingModel:: RegisterTransitCallback). Vehicles are
represented by a set of optimisation variables (RoutingModel::Start and
RoutingModel::Next). The solver represents quantities that accumulate along a path, like
distance, time, or vehicle load, with RoutingDimension and CumulVar. This mechanism is used
to model time windows.

Some specific problems have a dedicated interface, like pickup and delivery, where the same
vehicle must first pickup a parcel on its route before delivering it
(RoutingModel::AddPickupAndDelivery).

Arc-routing problems are not supported out of the box, but users can perform the transformation to
usual vehicle-routing problems by representing arcs to visit by nodes [4]. Edge routing corresponds to
arc routing, the only difference being that traversing each edge once (in either direction) is sufficient:
the distinction can be modelled using a disjunction (RoutingModel::AddDisjunction).

3 Solving vehicle-routing problems

OR-Tools provides several kinds of first-solution heuristics, like savings or a greedy, cheapest-arc
algorithm. The next step of the solver is to call iterative improvement techniques to refine the first
solutions, using heuristic operators. Many such algorithms have been implemented for VRP-like
problems5. Their goal is to alter the first solutions slightly to improve them by exploring the
neighbourhood they define. This process generates many candidate solutions (typically, at least
hundreds of thousands per second): not all of them are feasible or improve the solution; a filtering
system ensures that only feasible solutions are further considered.

To continue improving the solution when basic local-search heuristics cannot make any more
progress, a metaheuristic is used. OR-Tools implements simulated annealing, tabu search, and guided
local search (GLS). The end of the search with OR-Tools is performed with a CP solver: either CP* or
CP-SAT.

References

[1] OR-Tools. URL: https://github.com/google/or-tools/

[2] P. J. Stuckey, T. Feydy, A. Schutt, G. Tack, J. Fischer. The MiniZinc Challenge. AI Magazine,
volume 35, issue 2, 2014.

[3] David Applegate, Mateo Díaz, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O'Donoghue,
Warren Schudy. Practical large-scale linear programming using primal-dual hybrid gradient.
Advances in Neural Information Processing Systems, 2021.

[4] H. Longo, M. Poggi de Aragão, E. Uchoa. Solving capacitated arc routing problems using a
transformation to the CVRP. Computers & Operations Research, volume 33, issue 6, 2006.

55https://github.com/google/or-tools/blob/v9.2/ortools/constraint solver/routing parameters.proto#L115-L370

