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1 Introduction

For a couple of decades, we have observed a growing interest in condition-based maintenance
(CBM) strategies, a framework in which maintenance decisions are based on the current degra-
dation level of the items [1]. In this work, we seek to optimize the CBM policy of a distributed
system where inspections and remote sensors can inform on the current degradation level.
The system is composed of many units that function and degrade independently. They are
monitored continuously by remote sensors and occasionally inspected. The sensors imperfectly
estimate the item’s state at a low cost, whereas inspections reveal perfectly the true state
at a higher cost. We model the problem as a partially observable Markov decision process
(POMDP). For that, time is discretized and each unit is characterized by a discrete degrada-
tion state s; € S. Sensors provide imperfect observations o; € O, where imperfection in the
monitoring process is modeled by the conditional probabilities P(o; = o|s; = s). Eventually, at
the beginning of each observation epoch (a group of T' time steps), one observation o; is used
to update a belief b; representing the probability that the item is in each state.

We study, in particular, the optimization of maintenance operations in the offshore wind
turbine industry and propose an extension of [4] to the case of mixed sources of condition
monitoring information. However, although researchers recently made significant progress in
POMDP solvers [2], the obtained POMDP remains way too large to be solved efficiently.
Such complexity is due to the combinatorial explosion in the state and action spaces when
having multiple units in the system. Our main contribution is to propose a novel and efficient
hybrid heuristic, mixing dynamic programming (DP) and integer linear programming (ILP),
to overcome the curse of dimensionality. We also analyze the impact of imperfect monitoring
on optimal maintenance policies, extending a previous work [3].

2 Problem description

At the beginning of each observation epoch, imperfect observations o; from the remote sensors
are collected and lead to update the belief b; using Bayes’ formula. For each time step of the
observation epoch and each unit of the system, we should select one maintenance action among
NA (do nothing), PM (preventive maintenance), CM (corrective maintenance) and I (perfect
inspection). Each action is associated with a cost and requires a certain amount of resources
(e.g., number of technicians). An opportunity cost is also incurred each time a unit remains
failed (e.g., electricity not produced). The objective is to minimize the total maintenance cost
over a finite time horizon H (with H > T') while respecting a resource constraint.

Since deploying maintenance crews is an expensive operation, there is a solid incentive to
group interventions together (opportunistic maintenance). Such a system-level cost, combined



with a resource limitation at each time step, explains why the problem cannot be easily decom-
posed and solved item per item. As a result, the maintenance policy should be optimized and
coordinated at the scale of the system, which justifies the need for a scalable solving method
capable of handling a system composed of 20 to 200 units.

3 Hybrid heuristic approach

The maintenance planning is optimized sequentially. At each observation epoch, we solve the
following ILP (1) to schedule the interventions that should be conducted within the epoch (i.e.,
for t € {0,7 — 1}). We split the set of units [ into I, (working units) and I (failed units).
Binary variables 2", indicate whether the maintenance action a should be performed on item ¢
at time ¢; x; is a binary variable indicating whether the maintenance crew should be deployed
for a least one intervention at time t.

To ensure this framework does not result in a repair-at-failure policy, where PM would
never be conducted because of cost minimization, we carefully design the objective function to
balance costs from immediate decisions with expected future costs (close to the concept of value
function from DP). To do so, we introduce the functions C*(b,¢). They estimate the expected
future costs resulting from the schedule of intervention a € {PM, CM, I} at time ¢ for a unit
that is, at ¢t = 0, in a state described by the belief b. In a sense, it is a heuristic estimation
of the added value that can be expected from any available action. In addition, the function
CNA(b) estimates the future costs resulting from the choice not to schedule any intervention
within the current epoch. This gives us the following objective function to minimize:
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The critical element of our method consists in approximating those expected future costs
C*(b,t) using the Q-function obtained when solving an appropriate and well-chosen single
unit POMDP. We numerically validate this approach on a numerical use case, a wind farm
containing 50 offshore turbines, and show that, although sub-optimal, our method performs sig-
nificantly better than two alternative approximations. In addition, the fact that the proposed
decomposition method can exploit the value of information coming from imperfect condition
monitoring further confirms its relevance. Eventually, this is also encouraging as it computes
quite efficiently the policy for a relatively large system, for which using a traditional POMDP
solver would have been impossible.
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