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1 Introduction

Coverage Path Planning (CPP) is a fundamental problem in robotics, and it has many appli-
cations such as automatic floor cleaning, area patrol, or rescue search. CPP can be formulated
as follows. Given a planar 2D workspace with convex polygonal obstacles, and the size of a
mobile robot, find a shortest coverage cycle that fully covers the workspace and returns to its
starting point. To solve this problem, we usually discretize the workspace into a 4-connected
grid graph ¢ such that each cell of the grid has the same size as the robot. In this case, if
there exists a Hamiltonian cycle in g, we actually have a shortest coverage path as each cell
is traversed exactly once. The complexity of deciding of the existence of a Hamiltonian cycle
depends on the properties of g: it is in O(1) for rectangular grids with no obstacles whereas
it becomes N 'P-complete in case of obstacles [2]. Spanning Tree Coverage (STC) may be used
to compute an approximate solution in polynomial time [1]: we construct a graph G4 such
that each vertex of G4 corresponds to a group of 2 x 2 adjacent cells in g, and edges of G4
correspond to adjacency relations between these 2 x 2 cell groups; if each cell of g belongs to
exactly one 2 x 2 cell group, then there exists a Hamiltonian cycle in g if and only if Gy is
connected and, given a spanning tree T' of G4, a Hamitonian cycle in g can be constructed by
circumnavigating 7', as illustrated in Fig. 1(a).

In this work, we consider CPP for a tethered robot that is anchored by a cable to a fixed
base point. Tethered robots are largely deployed in underwater and disaster recovery missions
where a tet can provide stable communication links between robots and control center. We
study the complexity and introduce algorithms for CPP when adding two constraints related
to cables: a limit on the length of the cable (Section 2), and forbidden areas (Section 3).

2 CPP with limited cable length

When the length of the cable is equal to ¢, some cells may become out of reach because the
shortest path from the anchor point in the workspace has a length greater than £. These out-
of-reach cells are discarded, and we aim at finding a shortest coverage cycle in g that covers
all reachable cells. However, the length of a path in ¢ may be longer than the cable length
as the cable is kept taut by a system that pulls on it. Hence, a shortest path in g does not
necessarily leads to a shortest cable length, as illustrated in Fig. 1(b). As a consequence,
using a breadth-first-search (BFS) to compute a spanning tree in G4 is not enough to ensure
that the corresponding Hamiltonian path in g will never exceed the cable length. We show
how to adapt Dijkstra’s algorithm to compute a spanning tree in G4 that minimizes, for each
reachable cell ¢, the cable length between the anchor point and c¢. This allows us to compute
in polynomial time an approximate solution that satisfies the cable length constraint.
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FIG. 1: (a): Example of workspace discretized in a grid g. Vertices of G4 are black circles,
and each of these vertices covers the 4 cells around the circle. In this example, G, does not
cover the top row of cells. A spanning tree of G4 is displayed in orange and the cycle in blue
is an approximate solution that visits all cells but those in the top row exactly once: cells of
this row are visited twice by a forth and back path. (b): Example of paths (in blue) and cable
positions (in red). The blue solid path is smaller than the blue dashed path. However, when
cables are kept taut, the red solid cable length is longer than the red dashed cable length. (c):
the red solid line is an invalid configuration because the tether overlaps the forbidden area.
The robot can choose to bend around the obstacles to reach the target with the cable always
being inside the workspace.

3 CPP in case of forbidden areas

More generally, the workspace contains forbidden areas where the robot and its cable are
forbidden to pass (because passing through these areas may damage the robot or its cable, or
because these areas are crossed by humans who may be affected by the presence of a robot
or a cable, for example). A main difference between a forbidden area and an obstacle comes
from the fact that the cable is blocked by obstacles (it wraps around them), whereas it is not
blocked by forbidden areas, as illustrated in Fig. 1(c). We show that the presence of forbidden
areas increases the complexity of the problem of finding a spanning tree in G4: we prove that
this problem becomes NP-complete by a reduction from planar 3-SAT [3]. We also use Integer
Linear Programming to compute the maximum tree in Gjy.

4 Conclusion and perspectives

We proposed a new variant of tethered coverage problem, where the cable has a limited length
and the workspace contains forbidden areas. In this new setting, some planning problems
become intractable. As future work, we plan to study the parameterized complexity of these
problems.
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