Designing Convolutional Neural Network Architectures using a
Genetic Algorithm

Muhammad Junaid Ali'!, Laurent Moalic!, Mokhtar Essaid®,
Muhammad Sulaman' and Lhassane Idoumghar?

Université de Haute-Alsace, IRIMAS UR 7499, F-68093 Mulhouse, France
{firstname.lastname@uha.fr}

Keywords : Neural architecture Search, genetic algorithm, automatic machine learning, deep learn-
ing

1 Introduction

Deep Neural Networks (DNNs) are powerful models that can solve different tasks as speech, images,
and natural language understanding. In recent years, they have outperformed classical Machine Learn-
ing (ML) algorithms on numerous tasks. The problem with deep learning algorithms is designing them
manually and tuning their parameters, which consumes time and requires human effort. To solve this is-
sue, researchers have proposed Neural Architecture Search (NAS), which automatically designs a DNN
for a specific task. NAS automates network architecture engineering. It aims to find a network topology
to achieve the best performance on a specific task.

Typically, NAS consists of two stages: the searching stage, which aims to find a good-performing
architecture, and the evaluation stage, in which the best-performing architecture is first trained using
the training dataset and validated on the test set of the dataset. Corresponding to these two stages,
NAS consists of three main components: search space A, search strategy, and performance estimation
strategy. Let A be a single network in the A search space, i.e., A € A. Let Dipgin and D,y be two
subsets of dataset belonging to train and validation, respectively. The performance of architecture A
trained on Dy,.4;, and validated on D,,; sets is measured by a function /. NAS is mathematically

formulated as follows:
argmazx

A _]:-(Sval(strain(A))) (])

This study proposes a NAS approach based on evolutionary algorithm for searching Convolutional
Neural Networks (CNNs) architectures. For solution representation, a continuous encoding scheme is
also proposed.

2 Methodology

In this study, we proposed an approach for designing CNN architectures using Genetic Algorithm (GA).
A number of studies have used GA to design CNN based architectures [2]. Combined with GA, a contin-
uous encoding scheme is adopted to represent individuals, which maps each individual to corresponding
layers with specific filter sizes. A total of 10 operations are used including convolution blocks, residual
blocks, and pooling layers with different parameter settings. Numerous encoding schemes have been
proposed in the literature to represent the CNN architecture.

These encoding schemes have a direct impact on the search space’s complexity and architecture
performance [1]. To evaluate the effectiveness of the proposed approach, we performed experiments
on the CIFAR-10 dataset [3]. The implemented GA consists of four steps: (i)First step, the individuals
are generated randomly using uniform distribution between the range of O and 1. (ii)Second step, the
individuals are selected using a binary tournament approach. (iii)Third step, for reproduction one-point

crossover and bit-flipping mutation operators are used. (iv)Fourth step, for replacement strategy, the
offspring replaces the worst individual in the population to update the population. The visualization of
the encoding scheme adopted in this study is shown in FIG. 1.

IO.Gl I 0.72 |0.81 |0.01 |0.53 | 0.91 I

(@)

DiIatedConvaSl Res5x5 | Conv 5x5 | AvgPool 5x5 | SkipConnection

(b)

FIG. 1: Examples of genotype and phenotype representations of the proposed approach. The genotype repre-
sentation is shown in (a) where each gene consists of probability value between 0 and 1 mapping towards some
layers. In (b) the phenotype of each individual is shown in which each gene represents some convolution layers
with kernel size, skip connection or some pooling layers.

3 Experimental Results

To evaluate the effectiveness of proposed approach, we perform experiments on CIFAR-10 dataset [3]
with different parameter settings.

w
°

]
0

12.0

Fitness Value
s & B
n o w

)
o

25 5.0 75 100 125 150 175 20.0
Generations

FIG. 2: Convergence of the best fitness values on 20 generations

Population Size 20 Population Size 30

Training Epochs 20 Training Epochs 200
Number of Generations = 10 79% 86%
Number of Generations = 20 81% 92%

TAB. 1: Accuracy scores on different population sizes with the number of generations and training epochs.

The results on different parameters settings such as population size, number of training epochs, and
number of generations are shown in TAB. 1.1t is observed from the results that increasing the population
size and the number of generations leads to the exploration of more diverse solutions, which increases
the chances of finding an optimal solution. A good solution is found with a better accuracy score. We
consider the loss obtained from model on testing data as the fitness. Furthermore, the convergence graph
of fitness on 20 generations is shown in FIG. 2

References

[1] Vargas-Hakim, Gustavo-Adolfo, Efren Mezura-Montes, and Hector-Gabriel Acosta-Mesa. "A re-
view on convolutional neural network encodings for neuroevolution." IEEE Transactions on Evolu-
tionary Computation 26.1 (2021): 12-27.

[2] Mirjalili, Seyedali. "Genetic algorithm." Evolutionary algorithms and neural networks. Springer,
Cham, 2019. 43-55.

[3] Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images."
(2009): 7.
2

