The hub location problem with stopovers in a tree topology
Oscar Ariztegui Beltran  1, 2, 3@  , David Cortés Murcia  3, 4@  , William J. Guerrero Rueda  3@  , Mehrdad Mohammadi  5, 6@  , Olivier Péton  1, 2@  
1 : Département Automatique, Productique et Informatique
IMT Atlantique
2 : Modélisation, Optimisation et DEcision pour la Logistique, lÍndustrie et les Services
Laboratoire des Sciences du Numérique de Nantes
3 : University of La Sabana = Universitad de la Sabana
4 : chiper.co
5 : IMT Atlantique Bretagne-Pays de la Loire
IMT Atlantique Bretagne-Pays de la Loire
6 : Equipe DECIDE
Laboratoire des sciences et techniques de l\'information, de la communication et de la connaissance : UMR6285, Laboratoire des sciences et techniques de l\'information, de la communication et de la connaissance : UMR6285, Laboratoire des sciences et techniques de l\'information, de la communication et de la connaissance : UMR6285

This research focuses on the study of a hub location problem (HLP), specifically immersed in a tree-shaped network.
The objective is to find the minimum cost tree network with three sets of nodes: (i) a set of selected hubs, (ii) a set of spokes that are allocated to a single hub, and (iii) a set of so-called \textit{stopovers} that are intermediate nodes located on a path between two hubs. To locate stopovers, it is necessary to relax some assumptions of classical HLPs. The first one to violate is the assumption to have a complete graph of the hubs. In this work, the graph of hubs is a tree. Another assumption to relax is that the link between hubs may form a path traversing a set of stopovers.

We present a mixed-integer linear programming (MILP) formulation for the HLP with stopovers on a tree topology. Numerous computational experiments are performed to test the limits of the MILP formulation. We finally present a case study relying on a real river network.

 


Personnes connectées : 3 Vie privée
Chargement...